QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 54284|回复: 179
打印 上一主题 下一主题

[课件资源] 蚁群算法(找食物)附件:源代码

  [复制链接]
字体大小: 正常 放大

4

主题

6

听众

308

积分

升级  2.67%

  • TA的每日心情
    开心
    2011-12-28 10:43
  • 签到天数: 2 天

    [LV.1]初来乍到

    新人进步奖

    跳转到指定楼层
    1#
    发表于 2009-2-4 22:08 |只看该作者 |倒序浏览
    |招呼Ta 关注Ta
    小小的蚂蚁总是能够找到食物,他们具有什么样的智能呢?设想,如果我们要为蚂蚁设计一个人工智能的程序,那么这个程序要多么复杂呢?首先,你要让蚂蚁能够避开障碍物,就必须根据适当的地形给它编进指令让他们能够巧妙的避开障碍物,其次,要让蚂蚁找到食物,就需要让他们遍历空间上的所有点;再次,如果要让蚂蚁找到最短的路径,那么需要计算所有可能的路径并且比较它们的大小,而且更重要的是,你要小心翼翼的编程,因为程序的错误也许会让你前功尽弃。这是多么不可思议的程序!太复杂了,恐怕没人能够完成这样繁琐冗余的程序。 : _) U: K$ O* ?0 f* Y& m9 c

    9 q& \+ Q4 S" o- [8 \- K为什么这么简单的程序会让蚂蚁干这样复杂的事情?答案是:简单规则的涌现。事实上,每只蚂蚁并不是像我们想象的需要知道整个世界的信息,他们其实只关心很小范围内的眼前信息,而且根据这些局部信息利用几条简单的规则进行决策,这样,在蚁群这个集体里,复杂性的行为就会凸现出来。这就是人工生命、复杂性科学解释的规律!3 }& l$ j. d" J9 A

    ! f' ?0 C0 P' ^下面就是实现如此复杂性的七条简单规则:& i3 n7 |3 U4 E2 z
    7 [& M* Z+ i! i) U  R2 K$ Z/ {# ~
    1、范围:
    % O' g; A! |$ W( X2 K蚂蚁观察到的范围是一个方格世界,蚂蚁有一个参数为速度半径(一般是3),那么它能观察到的范围就是3*3个方格世界,并且能移动的距离也在这个范围之内。  \5 F0 M5 l$ Q
    2、环境:# d/ N/ s" p7 t- R: h( \& s
    蚂蚁所在的环境是一个虚拟的世界,其中有障碍物,有别的蚂蚁,还有信息素,信息素有两种,一种是找到食物的蚂蚁洒下的食物信息素,一种是找到窝的蚂蚁洒下的窝的信息素。每个蚂蚁都仅仅能感知它范围内的环境信息。环境以一定的速率让信息素消失。$ ^, S2 U$ R) V% L6 w. n8 s6 `  R
    3、觅食规则:# o$ W# m' @4 i) s4 W
    在每只蚂蚁能感知的范围内寻找是否有食物,如果有就直接过去。否则看是否有信息素,并且比较在能感知的范围内哪一点的信息素最多,这样,它就朝信息素多的地方走,并且每只蚂蚁多会以小概率犯错误,从而并不是往信息素最多的点移动。蚂蚁找窝的规则和上面一样,只不过它对窝的信息素做出反应,而对食物信息素没反应。
    1 _/ t% Z) x: m4、移动规则:
    " C7 T) U  O" f每只蚂蚁都朝向信息素最多的方向移,并且,当周围没有信息素指引的时候,蚂蚁会按照自己原来运动的方向惯性的运动下去,并且,在运动的方向有一个随机的小的扰动。为了防止蚂蚁原地转圈,它会记住最近刚走过了哪些点,如果发现要走的下一点已经在最近走过了,它就会尽量避开。
    . l, P( z3 b8 {# G1 N% Y. q5、避障规则:1 m. ~  j2 J* \& e9 ?; n# f% t
    如果蚂蚁要移动的方向有障碍物挡住,它会随机的选择另一个方向,并且有信息素指引的话,它会按照觅食的规则行为。
    # W8 ]' _& U+ A0 f7 J7、播撒信息素规则:; o0 i* J  C  q
    每只蚂蚁在刚找到食物或者窝的时候撒发的信息素最多,并随着它走远的距离,播撒的信息素越来越少。 1 }9 E6 h; r$ o( ^# F, K
    ! E8 k8 g3 Q; F% o( a. L8 k
    下面的程序开始运行之后,蚂蚁们开始从窝里出动了,寻找食物;他们会顺着屏幕爬满整个画面,直到找到食物再返回窝。
    " g0 Q/ z$ `( z
    : W- c$ J* C, H+ B; y5 i! I其中,‘F’点表示食物,‘H’表示窝,白色块表示障碍物,‘+’就是蚂蚁了。 % b3 {4 g8 O: E  |" `; T5 V/ I

    . x9 m5 h8 p8 E( Y7 I' K1 O, @4 e参数说明:1 @1 z6 ?/ G9 e' X- u3 E: i
    最大信息素:蚂蚁在一开始拥有的信息素总量,越大表示程序在较长一段时间能够存在信息素。信息素消减的速度:随着时间的流逝,已经存在于世界上的信息素会消减,这个数值越大,那么消减的越快。
    + B& C, _; \0 H( v; E错误概率表示这个蚂蚁不往信息素最大的区域走的概率,越大则表示这个蚂蚁越有创新性。* J- H6 k: k2 p9 Q$ m
    速度半径表示蚂蚁一次能走的最大长度,也表示这个蚂蚁的感知范围。
    4 I: U, A- o' _  X" \0 [- N, G记忆能力表示蚂蚁能记住多少个刚刚走过点的坐标,这个值避免了蚂蚁在本地打转,停滞不前。而这个值越大那么整个系统运行速度就慢,越小则蚂蚁越容易原地转圈。
    $ c+ C9 m" B2 w& B! C, X# N
    . t8 O/ k! u0 B4 ]; f+ L9 }参考文献:http://blog.minidx.com

    源代码如下.doc

    131 KB, 下载次数: 763, 下载积分: 体力 -2 点

    源代码如下.doc

    131 KB, 下载次数: 127, 下载积分: 体力 -2 点

    zan
    转播转播0 分享淘帖0 分享分享0 收藏收藏0 支持支持2 反对反对0 微信微信

    4

    主题

    6

    听众

    308

    积分

    升级  2.67%

  • TA的每日心情
    开心
    2011-12-28 10:43
  • 签到天数: 2 天

    [LV.1]初来乍到

    新人进步奖

    回复

    使用道具 举报

    eva2074        

    0

    主题

    4

    听众

    12

    积分

    升级  7.37%

    该用户从未签到

    新人进步奖

    回复

    使用道具 举报

    eva2074        

    0

    主题

    4

    听众

    12

    积分

    升级  7.37%

    该用户从未签到

    新人进步奖

    回复

    使用道具 举报

    wqm_10        

    1

    主题

    4

    听众

    54

    积分

    升级  51.58%

    该用户从未签到

    新人进步奖

    回复

    使用道具 举报

    summermop        

    0

    主题

    4

    听众

    63

    积分

    升级  61.05%

    该用户从未签到

    新人进步奖

    回复

    使用道具 举报

    summermop        

    0

    主题

    4

    听众

    63

    积分

    升级  61.05%

    该用户从未签到

    新人进步奖

    回复

    使用道具 举报

    日新 实名认证       

    7

    主题

    3

    听众

    233

    积分

    升级  66.5%

    该用户从未签到

    新人进步奖

    群组数学趣味、游戏、IQ等

    回复

    使用道具 举报

    酱子鱼 实名认证       

    1

    主题

    4

    听众

    140

    积分

    升级  20%

    该用户从未签到

    群组中国矿业大学数学建模协会

    群组趣味数学

    回复

    使用道具 举报

    ilichao        

    0

    主题

    4

    听众

    8

    积分

    升级  3.16%

    该用户从未签到

    新人进步奖

    回复

    使用道具 举报

    您需要登录后才可以回帖 登录 | 注册地址

    qq
    收缩
    • 电话咨询

    • 04714969085
    fastpost

    关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

    手机版|Archiver| |繁體中文 手机客户端  

    蒙公网安备 15010502000194号

    Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

    GMT+8, 2025-7-22 06:33 , Processed in 0.703180 second(s), 108 queries .

    回顶部