QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 2146|回复: 9
打印 上一主题 下一主题

虚二次域例两(-5/50)

[复制链接]
字体大小: 正常 放大
lilianjie        

43

主题

4

听众

204

积分

升级  52%

  • TA的每日心情
    开心
    2012-1-13 11:05
  • 签到天数: 15 天

    [LV.4]偶尔看看III

    跳转到指定楼层
    1#
    发表于 2012-1-4 17:41 |只看该作者 |正序浏览
    |招呼Ta 关注Ta
    本帖最后由 lilianjie 于 2012-1-4 17:54 编辑 8 Q* O8 y; B( V

    0 r2 y5 M5 _9 ~7 E5 O& }5 fQ5:=QuadraticField(-5) ;6 z% |* j. D6 N; w  a# b
    Q5;, `, O' o& c0 \' ~7 c( w
    , _. B3 J' i& w" T
    Q<w> :=PolynomialRing(Q5);Q;7 @+ G' P- D; D
    EquationOrder(Q5);
    ( m2 j, C& k! Y: K0 R% [/ W9 \M:=MaximalOrder(Q5) ;
    # E' \! Y+ _. t0 _8 GM;$ ~% g* R+ O) @# r5 a. L
    NumberField(M);: J" m" H& G9 _$ T8 N
    S1:=sub< M | 1 >;S2:=sub< M | 2 >;S3:=sub< M | 3 >;S4:=sub< M | 4 >;S5:=sub< M | 5 >;S25:=sub< M | 25 >;S625888888:=sub< M | 625888888 >;S625888888;6 W( x7 r) w- q# u
    IsQuadratic(Q5);
    6 n7 ~* w$ j6 ~) k2 }# mIsQuadratic(S1);
    . k; W. b  m) c$ oIsQuadratic(S4);
    3 G' K% u% S5 t9 F' w# e, hIsQuadratic(S25);
    0 C, `! E3 ]3 k. p& S! j1 e$ jIsQuadratic(S625888888);
    , G1 w# B/ N" y% W8 r' P7 z9 \* mFactorization(w^2+5);  3 Y  s  I3 n5 D0 S$ Z
    Discriminant(Q5) ;
    6 V( c) K$ a( r+ R! b/ E5 EFundamentalUnit(Q5) ;
    , w8 q' {/ v& }- l0 W! qFundamentalUnit(M);' o3 ^) G! \' S, j/ ]
    Conductor(Q5) ;$ d" D8 H/ ?5 s' A
    2 R: k" Z* Q1 P1 |/ U; ]
    Name(M, -5);: t; J% ~) N* H+ V
    Conductor(M);& D- h! m$ }2 v. H" l
    ClassGroup(Q5) ; : j. }+ k& S; X: w/ i
    ClassGroup(M);
    3 ~( h1 M+ F* f8 i( S% pClassNumber(Q5) ;
    & T# j6 u1 _& `! h9 aClassNumber(M) ;% s/ ^! ?# P( u4 E
    PicardGroup(M) ;- Y" e  J6 N0 V! j! h/ k8 }
    PicardNumber(M) ;
    ( s5 g* Y- h6 Y( C8 P  E* m" P
    4 p7 D. C  [0 [* l* rQuadraticClassGroupTwoPart(Q5);
    : q+ V8 A5 s$ ]) i* qQuadraticClassGroupTwoPart(M);
    9 L' \* ]$ L% J2 b6 I6 b8 z( ^8 UNormEquation(Q5, -5) ;9 }9 B; k: H3 B
    NormEquation(M, -5) ;
    8 [) u& h- o' c# O' `: x: zQuadratic Field with defining polynomial $.1^2 + 5 over the Rational Field  K/ x! u5 J/ B' @0 n
    Univariate Polynomial Ring in w over Q5
    " K! u% I, q+ p* a" K7 GEquation Order of conductor 1 in Q5
    , q; n( m2 g& c. {' L8 W7 u0 ~Maximal Equation Order of Q5
    5 h0 }. N" o+ P% j: LQuadratic Field with defining polynomial $.1^2 + 5 over the Rational Field7 K' ]  _% J" h( c; q' l" j: o9 H
    Order of conductor 625888888 in Q5
    7 m8 X8 H" N; S( D6 z/ ftrue Quadratic Field with defining polynomial $.1^2 + 5 over the Rational Field4 }  Q7 q; _( H
    true Maximal Equation Order of Q5$ j. M* b7 X& }9 I" `
    true Order of conductor 1 in Q52 {6 o4 K0 o* ?# O
    true Order of conductor 1 in Q5! {; ]2 V; G% z; N
    true Order of conductor 1 in Q5
    5 J% }# q' |; _0 Y) M' i  ~  E[, a% f/ e! b. m6 P8 R
        <w - Q5.1, 1>,
    6 E; h: |& R) `, L    <w + Q5.1, 1>1 U) U  Z! \5 `
    ]
    ; b' T& j* E5 o7 M& w-20
    ; U  t# T' O- G) F
    2 x: i# q2 p, \2 I7 j( x>> FundamentalUnit(Q5) ;: P7 S5 t3 Y( @/ Z- R( N1 J4 [
                      ^  p3 t& O4 T2 W! r+ G
    Runtime error in 'FundamentalUnit': Field must have positive discriminant" H6 X/ d0 b7 Y( n# g
    3 _0 g- N5 R# o% ?6 m) g# S/ F

    0 ?- y! ]5 g# @7 W- P- _. M>> FundamentalUnit(M);
    & o8 ~+ U3 @! m& R% U2 R                  ^! f1 a, t5 C  O" ^7 {. G
    Runtime error in 'FundamentalUnit': Field must have positive discriminant
    . ^! B  G. r9 M( g, U1 w6 c0 B/ G+ v7 d* k! U3 e) g% ?
    20+ V7 }8 N5 j1 W5 Z! F
    - l  |$ g, @0 E
    >> Name(M, -5);( g7 B' e; \: b/ |. V. p7 Y# G
           ^* u" ?- E1 [$ u1 |! \6 w$ s
    Runtime error in 'Name': Argument 2 (-5) should be in the range [1 .. 1]$ c5 t4 `) A. D7 S" b- L3 j
    0 J: X1 d' x) g4 F0 A) {) f; X
    19 I  i; k' B! U3 i  a9 L' I
    Abelian Group isomorphic to Z/2
    6 j, V! T4 ^7 D% ADefined on 1 generator0 S# s" t; \+ F2 ^
    Relations:
    ( w$ F) {8 v- q( r& Y4 }# C    2*$.1 = 0
    ' K! x$ b$ d8 z* c. O# I. kMapping from: Abelian Group isomorphic to Z/2; a6 q4 O/ v% e3 Z# R
    Defined on 1 generator) Y& R% a1 G: \" E3 _
    Relations:/ {5 l3 N" j3 y7 e
        2*$.1 = 0 to Set of ideals of M
      x) f; b! q* C' j! J* r! jAbelian Group isomorphic to Z/2
    6 ^. J3 G4 t+ \# a" v) G2 l: A" qDefined on 1 generator
    - [8 n, B* l# Q$ G8 J6 YRelations:
    2 I, m) j# o9 Y# C+ J  ^' {5 r    2*$.1 = 0
    8 {% J1 y% C+ a' X- n0 XMapping from: Abelian Group isomorphic to Z/2
    6 a- m& T* g( [6 V9 MDefined on 1 generator
    ! ~" z& n0 K4 T" ZRelations:
    ) r" O4 ~( _8 \- F    2*$.1 = 0 to Set of ideals of M
    - C$ Z% u9 e: |2 Q3 _1 T& y# h2
    1 r4 g7 \4 U8 ?2: p9 L1 r. U- J' u
    Abelian Group isomorphic to Z/2( L& X" R8 @- {$ M* X
    Defined on 1 generator. i: F5 F$ i; s
    Relations:2 n* ~, B( a! O9 \. U* F9 i
        2*$.1 = 0: w) X& A( x- q+ z
    Mapping from: Abelian Group isomorphic to Z/2( u) T+ t  p. q7 o+ @
    Defined on 1 generator2 s+ r8 Q) w* E* s& F' Y3 }
    Relations:! I8 I" B9 l- }+ p1 z4 N. R2 H
        2*$.1 = 0 to Set of ideals of M given by a rule [no inverse]+ B& ]) B7 a2 C7 V5 Z
    22 o6 l' w6 A! f8 h/ s4 x( y  r
    Abelian Group isomorphic to Z/2
    . C6 |, _( b- q0 b4 d, T& YDefined on 1 generator, Z5 @$ K0 C7 d( z8 s# `; w' c
    Relations:
    ; p) H, f& |3 @- L    2*$.1 = 06 p6 g" X; f+ f( l
    Mapping from: Abelian Group isomorphic to Z/26 W# l& v" E$ z- b, Q, q/ {& S; ^
    Defined on 1 generator. x# c, A1 g4 {/ g% N) H7 w' d" k
    Relations:$ {* d$ e3 I: `  Z
        2*$.1 = 0 to Binary quadratic forms of discriminant -20 given by a rule [no : t9 G' x" t9 L& e# }6 p2 L% @
    inverse]; e  o. c9 A. T+ S- }5 p; ^
    Abelian Group isomorphic to Z/2
    3 F. A3 k2 ?- }3 S& hDefined on 1 generator& W$ {, r  |& I
    Relations:
    0 K* P! b7 e% t# A* n    2*$.1 = 0; y$ `1 Y' B. p- H2 C& a* R
    Mapping from: Abelian Group isomorphic to Z/22 A$ ~+ G3 r! W! b1 s% \9 B% F% z
    Defined on 1 generator/ _. K0 s7 D; G- r
    Relations:
    # O) C+ d! a' b) S" w    2*$.1 = 0 to Binary quadratic forms of discriminant -20 given by a rule [no ! L6 e# a' C9 N$ [1 r: ^6 U
    inverse]8 |  E2 q  |/ {1 X0 A5 z
    false
    1 \( Y' b0 ?7 A8 _2 c, s& B! i: xfalse' y& v6 O" n9 {2 d' O! O5 s1 X9 c
    ==============2 z3 g# Y- A+ {: k  S: ?
    $ I+ D! _. K" q, F+ v. H: X1 d( S

    / v4 t, ?3 ~, R$ h2 aQ5:=QuadraticField(-50) ;2 Q$ \- P) d& t, A% a6 p6 {
    Q5;
    ; R7 U* t) f! q' \$ A2 G6 M. T" c+ K0 t2 Y; r* I# P
    Q<w> :=PolynomialRing(Q5);Q;: z$ H* _  y0 h& E% _7 M
    EquationOrder(Q5);" y8 j5 [; O4 w* J6 O2 y/ |
    M:=MaximalOrder(Q5) ;0 k/ x& |6 s5 `. c' [' s
    M;
    1 r& F! B0 j. ?& t+ H* ?& k" NNumberField(M);' w4 u0 |: ?8 ~+ j# x
    S1:=sub< M | 1 >;S2:=sub< M | 2 >;S3:=sub< M | 3 >;S4:=sub< M | 4 >;S5:=sub< M | 5 >;S25:=sub< M | 25 >;S625888888:=sub< M | 625888888 >;S625888888;
    $ A( O5 Y7 r% ~9 o% N1 dIsQuadratic(Q5);5 @- T* y' W- f/ t" e
    IsQuadratic(S1);. U0 G9 u$ N. A/ A1 A
    IsQuadratic(S4);
    $ G3 L, b; p2 I( f' ]IsQuadratic(S25);" f5 l( r9 s& y8 a" f
    IsQuadratic(S625888888);: g* r$ e+ E1 ?0 s0 {9 |6 O
    Factorization(w^2+50);  
    9 `) b; ?4 C5 x6 j) }Discriminant(Q5) ;: t% P1 Q# J' |: x: l: Q
    FundamentalUnit(Q5) ;* J; c6 u* ~8 v8 q, ^! K1 q
    FundamentalUnit(M);
    * e6 M6 G0 z' O( EConductor(Q5) ;
    1 x3 Z7 k2 c9 ?( {! @5 B( }6 H
    Name(M, -50);
    ! x( b& Y, O& w- ]6 K7 ~Conductor(M);
    % ^7 K) h5 A5 E% wClassGroup(Q5) ; . L9 S  c. w0 d; l' u3 w3 ~4 F9 ]
    ClassGroup(M);
    ' ^$ `9 F5 ?1 e/ H1 MClassNumber(Q5) ;9 U* v6 j  B9 {9 S
    ClassNumber(M) ;
    : [0 j3 W" S# _! \: Z, B. pPicardGroup(M) ;
    - L6 C) x( k/ o$ lPicardNumber(M) ;9 h0 K* l6 D* D1 s+ {: P+ j

    , J- R& d5 ]8 ~4 j$ DQuadraticClassGroupTwoPart(Q5);: v; X- m% A6 N7 m6 z& T: K( q7 m! I
    QuadraticClassGroupTwoPart(M);
      T, F5 V7 Q! y6 N4 b3 KNormEquation(Q5, -50) ;
    8 E, ]( U3 a( t% HNormEquation(M, -50) ;3 g! v+ \8 O8 K+ `
    . g% b; _, O) d) W7 h0 I/ t2 a6 h' u
    Quadratic Field with defining polynomial $.1^2 + 2 over the Rational Field7 W6 g( Q' m' j$ f, R5 v
    Univariate Polynomial Ring in w over Q5
    5 N$ Y, F6 |% U& w1 i8 _Equation Order of conductor 1 in Q5
    & r: P! q/ H* X% Z3 nMaximal Equation Order of Q5
    & b: `! g" P  d4 Y# TQuadratic Field with defining polynomial $.1^2 + 2 over the Rational Field
    * |8 Z: D, ~; d; J: T3 lOrder of conductor 625888888 in Q5  Y4 j, V% P4 s  P
    true Quadratic Field with defining polynomial $.1^2 + 2 over the Rational Field
    8 U% {% ?/ M% vtrue Maximal Equation Order of Q5
    3 V+ w3 n( O. F6 x) [- `2 strue Order of conductor 1 in Q5
    / p! N! }2 ^( R2 W' G& q2 [9 ytrue Order of conductor 1 in Q5" b! t- X. k7 B+ v: q! q
    true Order of conductor 1 in Q5/ h# W# e) e! m, {; {! g
    [% ~$ C! Z2 {- y% y. A! [6 o
        <w - 5*Q5.1, 1>,
    8 T5 a! ?+ T$ S$ M$ d7 [  E. t- e    <w + 5*Q5.1, 1>  _7 @* ^$ d# I  v* z8 X" f7 C5 D& Y
    ]% m) `3 `" X) B0 z' K- a
    -8& H1 {" }$ a4 s6 s

    ; r/ B: l! ]  K  A; h>> FundamentalUnit(Q5) ;
    # A1 y2 J0 y% ?. F# q                  ^
    5 }1 d3 Z4 Q4 N' |0 |' ARuntime error in 'FundamentalUnit': Field must have positive discriminant
    0 o2 a+ J1 y" |. Y/ N- t9 v' _8 L6 G/ G8 e* R; f3 s' J+ r
    / z7 P! j: f" Y: q1 o
    >> FundamentalUnit(M);
    , ]4 h: b) s2 R  p                  ^4 a, t+ L6 N8 v, I# C! [% B3 P. @
    Runtime error in 'FundamentalUnit': Field must have positive discriminant8 j0 n3 i" b1 \% n% ]0 \+ G

    ; @4 W: w. L) G8
    ! u) k& \) U& A. }9 n
    5 N- B: B! r# V8 p, \>> Name(M, -50);
    * p; l: Q/ b7 F6 y       ^9 u7 [% l4 @" Z) ^
    Runtime error in 'Name': Argument 2 (-50) should be in the range [1 .. 1]; o4 u. T) w2 Z( E* s) }3 ~
    4 k+ P, A  Z# ?
    1
    5 ?1 z2 F$ q1 `: B3 HAbelian Group of order 1
    # ?6 t9 w4 B  `Mapping from: Abelian Group of order 1 to Set of ideals of M
    2 t, o7 i6 m9 ^2 g) jAbelian Group of order 1
    ) C7 c6 F3 O: YMapping from: Abelian Group of order 1 to Set of ideals of M# Q) m( @0 _" T4 n. S
    1
    , t# m# F. K9 u, r8 l13 Y& W6 U% w6 _5 o9 R* f& E
    Abelian Group of order 1* o4 ~" X) Z! j& Z. y; P$ a
    Mapping from: Abelian Group of order 1 to Set of ideals of M given by a rule [no* N, D6 a3 x6 I0 L( N
    inverse]
    0 ]: l1 \2 o% n9 D* ~* M1
    1 @# L: a$ Y/ k4 _" S% KAbelian Group of order 1: L  H0 V) z4 ]9 ?  D
    Mapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant0 A1 X7 i! {8 k" {* T/ {
    -8 given by a rule [no inverse]" j* p6 F7 _0 X
    Abelian Group of order 15 Q- D1 }+ ]7 F% G# |- o: h; {4 F
    Mapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant+ S7 O& ?5 \# ]$ j( n# l1 g: z+ a
    -8 given by a rule [no inverse]
    ( P7 ?$ j7 J  C1 c+ U! q6 zfalse8 U/ q) Y* F6 }% [$ Q! y
    false5 ?1 B& t1 E' f, s2 u# o
    zan
    转播转播0 分享淘帖0 分享分享0 收藏收藏0 支持支持0 反对反对0 微信微信

    15

    主题

    4

    听众

    113

    积分

    升级  6.5%

  • TA的每日心情
    开心
    2012-1-13 11:49
  • 签到天数: 9 天

    [LV.3]偶尔看看II

    回复

    使用道具 举报

    lilianjie        

    43

    主题

    4

    听众

    204

    积分

    升级  52%

  • TA的每日心情
    开心
    2012-1-13 11:05
  • 签到天数: 15 天

    [LV.4]偶尔看看III

    本帖最后由 lilianjie 于 2012-1-10 17:41 编辑
    " A& p2 y8 E- w4 s; Z
    lilianjie 发表于 2012-1-9 20:44
    7 `( `2 v" X8 A分圆域:
    ) L* d) V2 n/ ~C:=CyclotomicField(5);C;
    0 c0 ]$ j# P8 D5 Q0 iCyclotomicPolynomial(5);

    % U  j1 k" q; B( z1 _% u. h( e# D# f
    5 J/ R+ L, F7 Z/ B0 v分圆域:3 I/ e3 ?' o# o! G- F/ O7 w
    分圆域:123
    % f3 D5 p, t. y" o: |- `: k) z
    ( P5 I; n# x& t# a* i; ^R.<x> = Q[]* v2 k% F" s& O5 J1 ~( e
    F8 = factor(x^8 - 1)9 P+ i( s) t% L; x6 O4 ]
    F8* M0 @% M% ]8 o3 B
    ; b. D$ t4 k* I; z# O1 w0 G
    (x - 1) * (x + 1) * (x^2 + 1) * (x^4 + 1)(x - 1) * (x + 1) * (x^2 + 1) * (x^4 + 1)
    5 G& Z" A1 q% }, |9 S2 v. T& G0 u' F/ m
    Q<x> := QuadraticField(8);Q;- P% t" X8 K( h3 @
    C:=CyclotomicField(8);C;) L) i" e- R, W9 B% c: M
    FF:=CyclotomicPolynomial(8);FF;+ A' d. T7 D# @& r( ?7 \9 u4 x% w

    ( ?) q! P9 r4 Y, U: TF := QuadraticField(8);
    7 C6 O; X6 I  D: }F;: E1 {: q1 O) {4 I2 q& l9 f5 d
    D:=Factorization(FF) ;D;9 Z/ a* C1 m4 `- g2 l$ ]6 @- i% t' B+ h
    Quadratic Field with defining polynomial $.1^2 - 2 over the Rational Field
    + x: q4 N, @9 ?  I' }  L. YCyclotomic Field of order 8 and degree 4
      y% t' `* [- r' @' Q! E, J' a) k$.1^4 + 1/ e6 {& o5 a6 k# y2 A9 N- s
    Quadratic Field with defining polynomial $.1^2 - 2 over the Rational Field3 ~% Q- J  o) h
    [
    : i' O. C" [" Q8 j    <$.1^4 + 1, 1>4 w" h- S4 k& n! l9 T. Y7 ^
    ]
    8 q: a2 a5 H3 Q' a# f  M9 g' e
    / }1 L& k  p* s$ {+ nR.<x> = QQ[]
    ( \- B9 w/ ^. f- }1 Y' KF6 = factor(x^6 - 1)
    & L$ X+ F$ t6 M9 WF65 F# F4 i7 y0 S

    ' K  e; z& i4 {  K6 b; O, Y(x - 1) * (x + 1) * (x^2 - x + 1) * (x^2 + x + 1)(x - 1) * (x + 1) * (x^2 - x + 1) * (x^2 + x + 1) 6 i$ L: Z# E$ T5 ]8 C
    ( b' E* N+ w& t- Y+ m- O7 I
    Q<x> := QuadraticField(6);Q;/ Z( m2 g5 d8 W% }! X- f0 }0 ]2 @
    C:=CyclotomicField(6);C;) G6 f  g. Z8 N- t, }
    FF:=CyclotomicPolynomial(6);FF;
    3 O4 ]: e+ k4 {
    & s( }, R- d% N' a8 X9 ^/ v/ uF := QuadraticField(6);
    8 o$ {0 G! b# fF;
    " }5 G) W) D, |" c! `D:=Factorization(FF) ;D;* ^/ {3 R# j1 r6 q
    Quadratic Field with defining polynomial $.1^2 - 6 over the Rational Field& H  r# b+ P( {# N- O4 T# v! g
    Cyclotomic Field of order 6 and degree 2# f; E4 H! P: ^  m$ {
    $.1^2 - $.1 + 1: }- X0 N& O  a
    Quadratic Field with defining polynomial $.1^2 - 6 over the Rational Field
    ' [8 {0 e8 t/ o6 |; b: w[
    4 B: h6 m9 k: ?3 M( T! D    <$.1^2 - $.1 + 1, 1>" C, S6 ]! b# t! i5 X9 E1 S
    ]0 M; e9 C# ~# [5 V

    ( p0 t2 f3 O0 UR.<x> = QQ[]
    ; @0 ^/ e+ M7 y; _; x+ y- {$ ?3 lF5 = factor(x^10 - 1)8 U) d! t6 o4 l3 e; q
    F5
      U, F8 B7 c8 M0 D) a(x - 1) * (x + 1) * (x^4 - x^3 + x^2 - x + 1) * (x^4 + x^3 + x^2 + x +! v4 w4 y# B4 D# V
    1)(x - 1) * (x + 1) * (x^4 - x^3 + x^2 - x + 1) * (x^4 + x^3 + x^2 + x + 1)7 W; A- q. S  S5 W  J: b7 I) u

    4 o" q  @* _: p" p6 R) {Q<x> := QuadraticField(10);Q;+ B# X% I8 O: d) ^
    C:=CyclotomicField(10);C;1 t! n1 W% O+ T8 j! [6 x
    FF:=CyclotomicPolynomial(10);FF;% P# e% W! F8 @' Q6 ?9 q
    5 R2 r- s- ?2 c  u
    F := QuadraticField(10);& S$ o3 i$ _: z. \: x
    F;
    # u4 S4 r; m/ s( q/ LD:=Factorization(FF) ;D;
    1 o% h; o+ C9 c- I8 M, `+ KQuadratic Field with defining polynomial $.1^2 - 10 over the Rational Field
    ! y+ v7 T, x' R# Q' VCyclotomic Field of order 10 and degree 4
    ) G5 H" H8 l0 j9 M6 {7 O3 }$.1^4 - $.1^3 + $.1^2 - $.1 + 19 j1 M8 _& y" `+ E4 K( p
    Quadratic Field with defining polynomial $.1^2 - 10 over the Rational Field
    ( m6 ^7 y8 @; E5 I! v[
    6 b2 ~1 l" k; E7 D& A" S, v    <$.1^4 - $.1^3 + $.1^2 - $.1 + 1, 1>2 @7 B' p- S) I- A1 w8 ~; C& b
    ]

    c.JPG (217.37 KB, 下载次数: 183)

    c.JPG

    aaaa.JPG (98.21 KB, 下载次数: 173)

    aaaa.JPG

    aaa.JPG (157.27 KB, 下载次数: 171)

    aaa.JPG

    aa.JPG (126.91 KB, 下载次数: 175)

    aa.JPG

    a.JPG (242.91 KB, 下载次数: 194)

    a.JPG

    回复

    使用道具 举报

    lilianjie        

    43

    主题

    4

    听众

    204

    积分

    升级  52%

  • TA的每日心情
    开心
    2012-1-13 11:05
  • 签到天数: 15 天

    [LV.4]偶尔看看III

    本帖最后由 lilianjie 于 2012-1-10 11:23 编辑 & T7 y1 O- g$ i' e  P( A9 B
    $ I  f5 w, x' z& O$ l6 k
    11.JPG $ @1 t4 g7 q5 A3 {/ ^+ L7 |
    6 q2 C% m& M  X% w5 o5 }5 P# d
    3212.JPG
    ; s  f* F& e: \3 z- M& [- }+ d8 e: g3 ?, y- I4 X
    123.JPG
    ! B  q+ ]9 ~% t7 P3 `9 E
    - L- ~" Z- E3 r. ~5 c0 M, s' i分圆域:
    0 z( y# j$ b- }, ?- y/ n+ mC:=CyclotomicField(5);C;2 N6 i8 S8 Z5 M, n, C7 V6 W" n$ N
    CyclotomicPolynomial(5);
    2 X0 \% u) A. j) V8 z; _/ |/ y4 bC:=CyclotomicField(6);C;7 \  m/ s6 N* Q# R
    CyclotomicPolynomial(6);( N! W: A) k8 K: J
    CC:=CyclotomicField(7);CC;% w' A7 @5 {  w5 _# o8 Z# G
    CyclotomicPolynomial(7);5 z! q% P" R& ^. ?
    MinimalField(CC!7) ;& K  }" C2 E  _% V5 o9 K" h$ g1 m: W
    MinimalField(CC!8) ;
    " M" z4 K$ l1 C6 m/ IMinimalField(CC!9) ;
    / y4 {: R& D- p" Q/ Y  R' O; UMinimalCyclotomicField(CC!7) ;, f9 N. g6 @5 M5 C7 @
    RootOfUnity(11);RootOfUnity(111);
    ! I/ h# S  @- e  @Minimise(CC!123);
    0 s7 }; o5 F1 T0 MConductor(CC) ;
    & G: {; I1 _: y4 QCyclotomicOrder(CC) ;
    * ~# @" T9 Z3 Z( x# @1 d' |* l  {# ], |, h# v/ O
    CyclotomicAutomorphismGroup(CC) ;
    : H2 o& n. O5 @/ m3 P3 c  v& q* x% b! V2 w8 E
    Cyclotomic Field of order 5 and degree 4
      ]( t# p$ E% x9 T7 |$.1^4 + $.1^3 + $.1^2 + $.1 + 1
    0 I0 m# g+ f+ y& |+ Y, A4 r0 N# I" GCyclotomic Field of order 6 and degree 2
    6 a& k1 c8 s/ Y$.1^2 - $.1 + 18 D" {1 B: ^) X, [! _
    Cyclotomic Field of order 7 and degree 6
    5 i8 ?3 z: t9 @& R. I" h$.1^6 + $.1^5 + $.1^4 + $.1^3 + $.1^2 + $.1 + 1
    " V0 O3 @% U* e! `! @Rational Field
    7 c! n9 r! `$ X/ cRational Field
    ! L8 x, Q8 \/ h+ h* _% HRational Field
    + l" j, B/ M+ {' FRational Field* {* j' o- @. j" d
    zeta_11) I/ G( f, \' z9 J( g3 z
    zeta_1111 @5 K0 U. S% H9 K
    123
    $ }, ~$ c, f3 ?. K; c4 X; U7
    ( I& V( c! `+ t! p" u, U' C) v* y7
    + ~0 C, K& J- mPermutation group acting on a set of cardinality 6
      U' O) J6 z$ r* Z" q) G1 ROrder = 6 = 2 * 3
    2 u) }3 O4 I) n' F6 F- }. V    (1, 2)(3, 5)(4, 6)
    4 C; _+ l4 r4 S% [: O" A2 M    (1, 3, 6, 2, 5, 4)% C+ x0 J- \# @' ^- e3 h
    Mapping from: GrpPerm: $, Degree 6, Order 2 * 3 to Set of all automorphisms of
    ) K, o" m3 L- y# L. PCC
      S' U! B+ _0 P5 F0 Q  l1 ]( wComposition of Mapping from: GrpPerm: $, Degree 6, Order 2 * 3 to GrpPerm: $, 9 M+ v+ J5 Z  U& a" w' m
    Degree 6, Order 2 * 3 and9 d$ g6 N# t$ m+ q8 I9 p
    Mapping from: GrpPerm: $, Degree 6, Order 2 * 3 to Set of all automorphisms of
    1 `$ n, k& P: U4 uCC
    回复

    使用道具 举报

    lilianjie        

    43

    主题

    4

    听众

    204

    积分

    升级  52%

  • TA的每日心情
    开心
    2012-1-13 11:05
  • 签到天数: 15 天

    [LV.4]偶尔看看III

    本帖最后由 lilianjie 于 2012-1-9 20:30 编辑
    7 L% n5 @+ u4 v8 h5 I0 [6 O9 v/ g- z2 k- f+ c/ g. V" P) M
    F := QuadraticField(NextPrime(5));5 Z6 V8 }7 c1 Z. B$ a  x+ m

    / R# U- k" ^& ^KK := QuadraticField(7);KK;( Z3 @6 R# C7 }8 G' g3 A; A5 C
    K:=MaximalOrder(KK);9 G. i1 c7 a% r+ c
    Conductor(KK);
    * s( s% Z' X0 J1 B; @1 rClassGroup(KK) ;
    , X2 X# E* k& C1 s8 J! qQuadraticClassGroupTwoPart(KK) ;
    : d' F4 z! Q. R, H$ p( X+ DNormEquation(F, 7);
    ! L9 L+ \7 \9 P5 t) C. uA:=K!7;A;
    6 v3 G- O% q0 A$ b+ N9 x) n% F: UB:=K!14;B;- z$ }- S; S; M6 B! l/ u- [1 Q
    Discriminant(KK)7 x. ?+ q# y/ K) Q7 P
    7 p: t4 u* h# D, G# B) |, U
    Quadratic Field with defining polynomial $.1^2 - 7 over the Rational Field
    # q$ J) q1 d8 h# C. l% N* Z- P28! M1 E0 X5 ^' j& C3 r
    Abelian Group of order 16 g5 R* Y/ y$ S1 @3 K6 ], I* \( V
    Mapping from: Abelian Group of order 1 to Set of ideals of K
    7 v% c0 S% e6 n9 M4 JAbelian Group isomorphic to Z/26 n, R; h: l, ~) [
    Defined on 1 generator
    4 y# `3 _- C1 H' |) b  Z% `4 GRelations:
    " Z! ?9 O% {, f( ]2 H9 S. ^$ H" I    2*$.1 = 03 O# S! `3 f7 T$ L" b$ _
    Mapping from: Abelian Group isomorphic to Z/2
    5 F8 t8 P) p: Q$ jDefined on 1 generator
    ! U) O" B$ V% N) G5 ZRelations:
    6 v) S9 g- C) \    2*$.1 = 0 to Binary quadratic forms of discriminant 28 given by a rule [no
    . [% D2 n% J+ T- X* Yinverse]
    5 B0 R' d2 s% f! U/ m9 Nfalse5 ^- n+ [& m: f0 k  {0 I  g
    7
    ; X9 g& E1 i# k! V14# U7 h3 r  t/ ^
    28
    回复

    使用道具 举报

    15

    主题

    4

    听众

    113

    积分

    升级  6.5%

  • TA的每日心情
    开心
    2012-1-13 11:49
  • 签到天数: 9 天

    [LV.3]偶尔看看II

    回复

    使用道具 举报

    15

    主题

    4

    听众

    113

    积分

    升级  6.5%

  • TA的每日心情
    开心
    2012-1-13 11:49
  • 签到天数: 9 天

    [LV.3]偶尔看看II

    Dirichlet character

    21.JPG (79.18 KB, 下载次数: 178)

    21.JPG

    11.JPG (74.76 KB, 下载次数: 177)

    11.JPG

    回复

    使用道具 举报

    lilianjie        

    43

    主题

    4

    听众

    204

    积分

    升级  52%

  • TA的每日心情
    开心
    2012-1-13 11:05
  • 签到天数: 15 天

    [LV.4]偶尔看看III

    本帖最后由 lilianjie 于 2012-1-5 15:20 编辑
    2 s6 L6 Q  B: I% }( B' X
    $ e: M( F$ D' x2 U. D7 K& tDirichlet character
    6 y- h6 P( {3 Q* |Dirichlet class number formula
    . B5 n1 x1 Z  h, s7 [6 j* a( V
    ! z4 g* i, n* C. |虚二次域复点1,实点为0,实二次域复点0,实点为2,实二次域只有两单位根
    # a1 {0 @$ K, F& ]
    $ q% d3 d' |& Z+ g) V-1时,4个单位根1,-1, i, -i,w=4,            N=4,互素(1,3),    (Z/4Z)*------->C*      χ(1mod4)=1,χ(3mod4)=-1,h=4/(2*4)*Σ[1*1+(3*(-1)]=14 o4 B" }9 r3 F3 s$ T

    : T- {7 I0 D- s; G. s/ L-3时  6个单位根                             N=3  互素(1,2),    (Z/3Z)*------->C*         χ(1mod3)=1,χ(2mod3)=-1,0 w0 S, F0 `7 v9 h8 s" o
    h=-6/(2*3)*Σ[1*1+(2*(-1)]=1* t$ e: f+ p3 F- L

    ' R* R! T7 p: V1 h' {" s3 z-5时  2个单位根                              N=20   N=3  互素(1,3,7,9,11,13,17,19),    (Z/5Z)*------->C*         χ(1mod20)=1,χ(3mod20)=-1, χ(7mod20)=1, χ(9mod20)=1,χ(11mod20)=1,χ(13mod20)=1,χ(17mod20)=1,χ(19mod20)=1,4 E' _  V! A( Y# Q0 |0 g6 a0 c: D

    6 O& K  D* ?6 U# s, F: q; c
    ; O+ Y/ l# ?3 F9 |+ t& B  x
    2 T2 J1 q$ Q' _' Ah=2/(2*20)*Σ[1*1-3*1-7*1+9*1-11*1-13*1+17*1+19*1]=2
    - f9 n* X, L5 K# P1 \% a
    % y! k3 b- V+ P3 m; ^. J
    ( |' s! s5 r4 G7 ]2 \3 Z$ V7 v8 D( b' Q; J1 L: G
    -50时  个单位根                          N=200; r7 M5 h1 D9 Q$ x- p! M) l+ e: @/ x, U
    回复

    使用道具 举报

    74

    主题

    6

    听众

    3283

    积分

    升级  42.77%

  • TA的每日心情
    无聊
    2015-9-4 00:52
  • 签到天数: 374 天

    [LV.9]以坛为家II

    社区QQ达人 邮箱绑定达人 发帖功臣 最具活力勋章

    群组数学建摸协会

    群组Matlab讨论组

    群组小草的客厅

    群组数学建模

    群组LINGO

    回复

    使用道具 举报

    lilianjie        

    43

    主题

    4

    听众

    204

    积分

    升级  52%

  • TA的每日心情
    开心
    2012-1-13 11:05
  • 签到天数: 15 天

    [LV.4]偶尔看看III

    看看-1.-3的两种:
    + B! ?- M2 [1 k; U
    - R0 Z9 Q+ N) I! ]: z8 J; w. BQ5:=QuadraticField(-1) ;
    ( x# G, J& d* R5 s6 x$ OQ5;
    $ E/ u5 r8 |  f; C& p" g  \& W8 M$ w$ r* s. B
    Q<w> :=PolynomialRing(Q5);Q;
    " W' o5 N/ n/ T$ q- _2 c) |) UEquationOrder(Q5);, w" H" ^* K  _$ S4 M+ q
    M:=MaximalOrder(Q5) ;5 Q2 L  \+ ^% E- [# L2 f8 V& s. c4 [+ m
    M;
    ( \3 c* n* w% t) T* Q3 G' B. S5 gNumberField(M);) f6 ~  M5 p( J$ q, g: ^, L) [5 |
    S1:=sub< M | 1 >;S2:=sub< M | 2 >;S3:=sub< M | 3 >;S4:=sub< M | 4 >;S5:=sub< M | 5 >;S25:=sub< M | 25 >;S625888888:=sub< M | 625888888 >;S625888888;
    - C; k0 |/ @' T8 e1 a9 N' O' }IsQuadratic(Q5);& ~! A( H4 ]8 l5 T7 v
    IsQuadratic(S1);
    , r  S2 @" x0 H' MIsQuadratic(S4);* \4 d+ b4 {2 J7 A4 T
    IsQuadratic(S25);
    , P7 B8 a* C# @( m: \. {1 @3 \IsQuadratic(S625888888);/ R0 D" Z) A4 [
    Factorization(w^2+1);  4 _( t; B& ], X! g
    Discriminant(Q5) ;4 c; ^0 r' z  a
    FundamentalUnit(Q5) ;0 O6 |6 Y3 k; T. a! M. [! X: F
    FundamentalUnit(M);+ a8 S$ a6 E6 k% u
    Conductor(Q5) ;
    7 K7 L) d9 j4 _; S- e
    5 B% V% I2 }* F7 t% AName(M, -1);
    / l; T- P% B: R. R  S$ \Conductor(M);
    $ i0 P$ i6 E  S, m5 m) A1 XClassGroup(Q5) ; 5 p9 [  b3 ]( @4 y$ F
    ClassGroup(M);) [# W( f' _$ T0 U$ D" ^; s
    ClassNumber(Q5) ;# g/ D6 n& N4 M! @9 ?- F  [  C
    ClassNumber(M) ;
    ! S' i. m/ H4 j. DPicardGroup(M) ;! t% Q" ^4 g3 G$ i  `! E* Z
    PicardNumber(M) ;: t5 ]4 V( [! h

    2 h6 a% T: S' `; DQuadraticClassGroupTwoPart(Q5);
    ! _/ }7 W0 _$ ^QuadraticClassGroupTwoPart(M);7 c0 G! s& H( A4 M7 B! ^
    NormEquation(Q5, -1) ;
    : q) T4 {6 E! w) ~( `- tNormEquation(M, -1) ;0 [3 t3 ^6 e  p
      y( Z/ M4 s$ b3 B# L
    Quadratic Field with defining polynomial $.1^2 + 1 over the Rational Field
    % G" i4 p0 E0 J* ]  IUnivariate Polynomial Ring in w over Q57 H, I- X: r/ @; J
    Equation Order of conductor 1 in Q51 @7 g( c4 m, ^
    Maximal Equation Order of Q5
    ; g, X1 v$ G2 Q+ {. |- l* SQuadratic Field with defining polynomial $.1^2 + 1 over the Rational Field$ a; i$ u% H! z9 |& {
    Order of conductor 625888888 in Q58 ?* M0 u# `& C9 r" N
    true Quadratic Field with defining polynomial $.1^2 + 1 over the Rational Field
    2 w1 f9 ], z7 I% M+ t0 W) Ytrue Maximal Equation Order of Q5/ n. L* ]. R' K; M
    true Order of conductor 1 in Q5
    , ]! v& D0 X2 E" ^true Order of conductor 1 in Q5, n" }: g/ h* g8 y! G1 D" o/ T
    true Order of conductor 1 in Q5
    ' Q' j$ m- F  R/ f" k% a[
    / Z3 T6 b& \- c: X  Q" i    <w - Q5.1, 1>,
    2 Y! S$ J  e0 e    <w + Q5.1, 1>
    / |( R$ q7 x& n' W& d+ D5 J]  b8 P/ e0 e7 f6 |! ?/ N
    -44 ]: s* _. {* f1 {8 P; z& q" a2 J

    5 D( ?2 [+ J6 S# H8 U>> FundamentalUnit(Q5) ;
    - h9 |  v+ \0 E# k, j2 B3 M) `                  ^$ s" u9 g9 l, \3 h
    Runtime error in 'FundamentalUnit': Field must have positive discriminant1 ~  N1 s& K: I. b; j8 z7 m
    ) _) S3 ?) y; w
    / R7 w% ?6 u( n0 P7 m/ c
    >> FundamentalUnit(M);
    3 y  C. g3 s$ R4 I% b                  ^
    % k# ]6 `# H1 T" H% `# f. @Runtime error in 'FundamentalUnit': Field must have positive discriminant
    3 H6 |. j7 f5 ]$ m* a/ \
    $ P0 ?7 L  O. K8 X6 S- y4
    + Y7 |4 z& ~8 [% w' N# x9 U
    + Y2 \, x3 g6 l2 o1 I>> Name(M, -1);' z, f: C4 M, v  R: }
           ^9 f$ V$ v0 [0 |2 p+ }! X
    Runtime error in 'Name': Argument 2 (-1) should be in the range [1 .. 1]/ c: ^# {7 p( Y0 s6 l( f

    ) N7 \; J5 M2 V/ Z+ p1
    7 i+ `  B0 Q/ y# I# U+ lAbelian Group of order 1, J; r5 L. q0 T# f; X
    Mapping from: Abelian Group of order 1 to Set of ideals of M
    4 I0 h+ e  q& B( X! H# h' Y0 QAbelian Group of order 1& _! U5 U7 a. t* k% E# [; B
    Mapping from: Abelian Group of order 1 to Set of ideals of M
    ; f, V- U! x& Q7 p1
    ! ?& P. R' |: A1" @6 c; D7 S. f( q
    Abelian Group of order 1+ I. T0 r0 d% w
    Mapping from: Abelian Group of order 1 to Set of ideals of M given by a rule [no; M' c2 Q1 a  N2 N/ _
    inverse]
    9 P4 _$ w$ X" R6 G2 v1
    7 z* @9 Z! {5 l, N) N# NAbelian Group of order 13 F: j5 H# X, d$ |, p+ y
    Mapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant
    6 M+ r8 L3 {; @4 h/ y-4 given by a rule [no inverse]* @& r2 H) F1 K2 j9 T
    Abelian Group of order 1/ I0 L8 e# I- p0 C9 e: @( d
    Mapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant, W+ s, x6 `* I. f' N
    -4 given by a rule [no inverse]
    # a# ~2 H4 q% A! sfalse! n# V) N, p! v3 n
    false! L$ C/ l% e. C" q( Y
    ===============
    8 m$ C9 Y: e, k2 K) v# R4 l% i- {
    Q5:=QuadraticField(-3) ;" |- ~: D" ^/ ~
    Q5;
    + p/ Z% v( i. F: R' ]; S# `% e' h) n( T& s# o: r+ j1 K
    Q<w> :=PolynomialRing(Q5);Q;' `3 C2 Y% j& U* w, J0 _/ S
    EquationOrder(Q5);
    , Q7 k& ?' J& R" }4 C' E( {% E- C7 F  NM:=MaximalOrder(Q5) ;
    , a1 ?* ?$ J. K" XM;
    9 x6 X2 J8 P0 G  R8 C/ [* Q7 INumberField(M);+ i( X0 @8 o4 F$ [/ T$ k  C) @8 i2 x
    S1:=sub< M | 1 >;S2:=sub< M | 2 >;S3:=sub< M | 3 >;S4:=sub< M | 4 >;S5:=sub< M | 5 >;S25:=sub< M | 25 >;S625888888:=sub< M | 625888888 >;S625888888;
    0 R) `6 R* V/ d' c- rIsQuadratic(Q5);
      f6 U5 V/ e: ?( W! V* pIsQuadratic(S1);8 a  i! m" |# G9 \& z
    IsQuadratic(S4);8 c$ U! ~2 E1 F: E# g
    IsQuadratic(S25);3 e( e4 @+ @; t" a; u
    IsQuadratic(S625888888);
    9 v0 Q% z) n. e# {7 c1 S; R2 l& xFactorization(w^2+3);  
    + q8 G# N1 @* l: i  u( Q+ lDiscriminant(Q5) ;: J# ~  Q' X2 q4 Z
    FundamentalUnit(Q5) ;, Z# l+ M7 h9 g5 f) H
    FundamentalUnit(M);
    $ q3 r- L- e2 GConductor(Q5) ;
    % g& N4 J# Z& _4 p- L2 }8 q' `, ]* a& z, O; [* k
    Name(M, -3);+ H9 w) u9 ]1 ^+ v
    Conductor(M);8 _- w+ m. l, W& Z) p
    ClassGroup(Q5) ;
    ) o* ]; X% V7 f: [; bClassGroup(M);
    $ V5 H: i) S( D1 S; GClassNumber(Q5) ;
    - e5 _. b$ X& m' a, F8 w+ SClassNumber(M) ;. l7 ~% f1 _5 E1 z* O$ @
    PicardGroup(M) ;7 R  t) l- ]! j6 G+ E" K$ E; A6 K
    PicardNumber(M) ;
    / Z. [3 s8 D4 _1 j8 X; e& h) }7 Q1 a7 w6 S2 y- a4 }; u: K- V
    QuadraticClassGroupTwoPart(Q5);* [' F% W$ A. V% I( b* F# x
    QuadraticClassGroupTwoPart(M);
    & ?' Y3 ^- i2 o: f' {# M( K' FNormEquation(Q5, -3) ;) Q2 y% n$ t& a) A
    NormEquation(M, -3) ;% h0 T, x+ G* M* ~
    3 p- ~  |% e5 g; b( m  z) k% D
    Quadratic Field with defining polynomial $.1^2 + 3 over the Rational Field4 ]& g  o& @7 J* c+ k
    Univariate Polynomial Ring in w over Q5" ]! m. B& M5 g5 P2 S
    Equation Order of conductor 2 in Q5
    0 p: H5 j/ y8 Y9 W/ NMaximal Order of Q5
    . g$ F% r6 {. HQuadratic Field with defining polynomial $.1^2 + 3 over the Rational Field
    5 {2 d! A+ W4 n5 C, N$ p$ f7 XOrder of conductor 625888888 in Q5* h: ]/ w5 {8 m1 ~
    true Quadratic Field with defining polynomial $.1^2 + 3 over the Rational Field/ ^% R7 @% ^) `; U
    true Maximal Order of Q5
    3 ]) q) P1 y  u- F" ptrue Order of conductor 16 in Q57 g: T- _3 o* P$ C
    true Order of conductor 625 in Q5
    $ ?& |" f# ?+ t0 Q, Dtrue Order of conductor 391736900121876544 in Q5
    5 u" N% T3 a2 P0 E) v4 G$ V, c5 t[+ H! H" g! h$ d; C& `' f
        <w - Q5.1, 1>,4 e+ B: F. o3 m' O+ R- ?
        <w + Q5.1, 1>+ z* b! q% w. `$ L( M* f7 S
    ]% ?5 r1 P( S! V
    -35 e: I3 S* Z/ O" q$ W' V- F

    % l( S) s% }/ K+ j* O; {4 q; r>> FundamentalUnit(Q5) ;
    3 p, l& n+ P0 [5 d4 D1 z                  ^) X" _$ C& _4 [: I/ j5 _
    Runtime error in 'FundamentalUnit': Field must have positive discriminant8 Z& M3 t! |( {9 R

    ' @& ^+ q% l+ g! W  h- c3 B
    & J+ l+ M+ q* A# g5 ?0 e, h4 y>> FundamentalUnit(M);7 z; n( L" B7 b7 h; f
                      ^
    0 T* F! x( |) ~. ^; A/ S9 D/ @2 l; ORuntime error in 'FundamentalUnit': Field must have positive discriminant" s6 S: y' R) d1 }. o" K
    5 q! G& o) z: v9 f, v0 K
    3
    # H$ [& N4 N; a5 l' b2 w1 ?0 ~/ s
    >> Name(M, -3);5 E/ X! M& i# r2 F0 q- {1 w) Y9 B
           ^) B4 H, H1 U) \" D
    Runtime error in 'Name': Argument 2 (-3) should be in the range [1 .. 1]/ N6 e, m3 Z4 t" y. a9 D
    8 X/ U, A1 v9 c; Q
    1* d, g+ U5 X* H8 F+ @0 [, G/ l4 i
    Abelian Group of order 1
    ! X" t8 y& g) S1 d" A4 p$ M! L- TMapping from: Abelian Group of order 1 to Set of ideals of M
    ) {/ D. F" I* p5 O( n( B( g; y! V# jAbelian Group of order 1
    9 P* M  ]. }' D( }0 p! s# JMapping from: Abelian Group of order 1 to Set of ideals of M( C' b8 G) U' a. j1 r0 I
    1$ o6 \/ R7 F: |7 I8 [5 E  K2 L9 z
    1  v4 K/ N& u+ |0 W$ w' \9 H
    Abelian Group of order 1
    0 z' h$ [/ h/ JMapping from: Abelian Group of order 1 to Set of ideals of M given by a rule [no
    0 [1 _; y6 f5 J- L. a* U. ~4 Yinverse]# E& u9 w8 o& U. [
    1
    9 m3 y$ r9 z$ ?# l" m8 IAbelian Group of order 1+ k! d4 k( J" U1 h  c  y$ @# q, O
    Mapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant" H: n/ W' G) v$ J3 X- k
    -3 given by a rule [no inverse]
    5 j' m2 f. b  a! v( z9 H/ }Abelian Group of order 1
    " P0 {/ z3 g' W1 w1 |+ RMapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant
    ; r+ ]4 R8 a, L. i6 m-3 given by a rule [no inverse]+ e: c8 a' k/ g' C, V8 u
    false
    3 `( Y7 a" P! J' afalse
    回复

    使用道具 举报

    您需要登录后才可以回帖 登录 | 注册地址

    qq
    收缩
    • 电话咨询

    • 04714969085
    fastpost

    关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

    手机版|Archiver| |繁體中文 手机客户端  

    蒙公网安备 15010502000194号

    Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

    GMT+8, 2024-5-26 06:22 , Processed in 0.686590 second(s), 103 queries .

    回顶部