请选择 进入手机版 | 继续访问电脑版

QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 495|回复: 0

Christian GOLDBACH THEOREM

[复制链接]
字体大小: 正常 放大
数学1+1        

22

主题

14

听众

2503

积分

升级  16.77%

  • TA的每日心情
    开心
    2024-1-30 09:26
  • 签到天数: 828 天

    [LV.10]以坛为家III

    新人进步奖

    发表于 2023-12-13 17:43 |显示全部楼层
    |招呼Ta 关注Ta
    Christian GOLDBACH THEOREM
                                  
    Abstract:We record the number of elements whose sum is not less than 6 and not greaterthan x for two odd prime numbers as M(x). Based on the definition ofprime numbers and the valuation of trigonometric sums using prime numbers assummation variables, Thereexists a minimum and maximum value for M(x)The valuedifference of M(x) was calculated using the Newton Leibniz formula, and the Christian GOLDBACH theoremwas obtained.Derive Hardy LITTLEWOOD theorem based on Christian GOLDBACH theorem.
    Key words: even numbers, Prime numbers, positive constant
    MR (2010) Subject Classification 11P02, 45A00

    7 [: [  L- n3 D+ {) u2 A
    ' W( W0 I2 y7 v2 d
      b, e" h0 _. D; p5 U. i* q8 H& Y4 }5 e' P/ F/ ?

    " W5 Y* M: p: ?+ q$ W
    zan
    您需要登录后才可以回帖 登录 | 注册地址

    qq
    收缩
    • 电话咨询

    • 04714969085
    fastpost

    关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

    手机版|Archiver| |繁體中文 手机客户端  

    蒙公网安备 15010502000194号

    Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

    GMT+8, 2024-2-29 21:08 , Processed in 0.386609 second(s), 52 queries .

    回顶部