- 在线时间
- 10 小时
- 最后登录
- 2012-10-2
- 注册时间
- 2011-4-23
- 听众数
- 3
- 收听数
- 0
- 能力
- 0 分
- 体力
- 116 点
- 威望
- 0 点
- 阅读权限
- 20
- 积分
- 48
- 相册
- 0
- 日志
- 0
- 记录
- 0
- 帖子
- 27
- 主题
- 0
- 精华
- 0
- 分享
- 0
- 好友
- 1
升级   45.26% 该用户从未签到
|
Plot[Evaluate[D[f[x], x]], {x, 0, 4}]
(*Plot[Evaluate[f[x],x],{x,0,4}] 不行!*)
df[x_] = D[f[x], x];
Plot[df[x], {x, 0, 4}]\!\(\*
GraphicsBox[{{}, {},
{Hue[0.67, 0.6, 0.6], LineBox[CompressedData["
1:eJwVl3c81d8fx7n3cgf3GmVriZKvUBEt552EMouKhpnRoDKKiqRIorQkIxWV
lNGwKk6RkSIjVEIpe1wX93Ivl9/n9w+P5+Nz7jnv13ues8T92E5PkoiIyF3i
z///b/fsa3jfH2R80qRks4jIKKJsUT7eqeSAeg5leM2TGkVr0hJTXikdRFaW
n6KXLRxFlrWtL1OVAtGuv4veW20cRXsOTpbcULqIvki5v08MHkXtupe2xCnd
Qqn2/6xWckbRfTnbqBilDKR4TmRqXRcHnae9Wn5Z6TXKWr44+Uj5OHJ0epA7
yvmIYjqb7LtqJ5HE3Pn95gu/oh3xuhs+nZtGGjtG+sqvfENvbP0vaYvOoVN1
61DixA9kbcukxNmKgsJrmQ5R0U5UvFmuRaGLBAVdW7583diF0n1mnC19KdBi
cZ4TZ96FSoSe5nx/CvBySuWtdnahxY2ypIxgChieWedW7d2FpD6s/se+QIGi
ebq89ze6kOn+nXJuSRQoNlVe/LKP+L7VefJxJQXePR4NuHXrL+oVvpjLURWD
ssOpKk5D/5D25ZU3F5eKwav+I0ecef9Q4Vzm4ZQyMcjwWf/WQ6QbKd3azJ5f
JQaRXq17/eZ3Ix1Dk8npr2Jg4S6TdGFjNxL/WVz54I8YfHWKVMyJ7UZdnN0X
t1PE4ZeFrxx5ZQ+aVPLyFzUXh9qqDZ40wx404elZybIUh1IzRj5zcw8KV3gX
oWgrDmmmTxwUd/UgN8XK/5bsEQd3+HNzZWgP2pSQSqJ6i0Of4S5Zx9oeZLPO
qF0tShy4yzZJZfv2otXuFyRiP4iDcZdJVUxwL1Lw5Z05ViEOUakW53wu9CLD
yBFXm0/iID/fgb30bi96tsMsdLZeHNaKHvma9LEXueQGvVj+WxyC2xKvRav0
oW35+xKSheIwc21C6uCnPjR+IvQ9V58KppaCqs3f+pD1yT97TIyoECsuEr6o
sw8F7NjFiNlAhQWhEqM/J/rQ2nfr8xkmVDA+rFa/Y3E/+mH84Fu9DRXOmdrF
o1P9qLCeVeXrTQUS/5m0isYA8lPW62m5RQWVWpNxpDuADnXv2+Jwhwr6D340
H1w3gEryyli1d6nguY2anGM9gLRTdXrz7lGh+q67hsnJATQ7K+ayOZMK19Yr
rT9UNYAkfp06duENFTJZeapXGwaQcVDY/YJ3VHjfZTb3sm0AXVkUo9JdSoWx
mMCPM+wBdPxIVs+acirsbvtqE684iNy7R68nfqaC6tkoj8JDg+jkyaOmZ9uo
YGC3wOxXwCCysI6merRTwUb9taZo2CA6bft81LST0Pflz/D2G4PoWLa8tqCL
Cl2qm4I73gyijMM1NK0BKjwtGY8VkxxCb3W9PFMnqVB2PeaYlvwQurCq8awB
nwo/PZfstF08hA4tvJlQLaCCJMtW4a7+ELqxd011p5AKx52zHmgfGEIdEn+6
G8g0WDvnWmCfM4SSy4ZVylk0sLJ+H7G1aAi11jGHyNI08EheZGtYNoQ8DnnU
IRkaxBt29Cq3DKGHv45+yJxHg/5j+5S6hEPozMnNy5EiDURK33Q3UYfRp2v2
to5KNJCXVH5ZITOMZl3UQo4q08Ak8/v2pxrDyORU2adIVRqk/N519rj1MJKT
LNE4u5gGL3XyLdz3DKOd4K7mu4QG1Wfnyzm4DSOztYekndRowFVsyjYMGkYy
dsFFS9RpYLPDrnM2ZRhJv387F7ScBgfTcp+NPh5GVpRYG2NNGpwZZgV35Q2j
+QkXwkRX0CDzcq105cdh1FPeHBKsRQPRsu0mcUPDKMnw4SPNlTRQlM5ineMN
o+V804oqgnWc6W3HRUZQgdNUvpsODfYKqgIc5o+gjIl4UpQuDY5bLAezhSMo
svjUXmk9GlxKiJI00hxBLwz8z9wm+PXqrY9UNo4gzX3PpeNX0aAmPOME04xY
nzEWLraaBr/ryMZztiMoqc/pZRDBzCNlLV0eI2hlW5qd2RoaqBcvSf/mO4KS
A2KKHxO8nnr+WOWpEdTVnt0mqk8Dr3REy7oygn6Hlm7JJPgs59635Nsj6JlK
SeQ4wTfR7P24tBFU4qwQss6ABllxB3zPPR1BabhV5TTB79verTvxagTV+NGP
5hPcskJV3KNkBJnvLvIeJHjo1JlGh6oR5KTCkVRdSwNS5c97Zg0jSG7xBydz
gpXmrz9i1DaCJCPXWvkSrOd+11CrewQNaLl2xRFsljdFVmWPILNca+WnBO+f
3VPP5I8gaWupsVKC/a0KU+ZIbBQxlu/9leDoJPlDHEk2SnOwD/lJcFpfkMFf
eTYqHuWr/ya4YG2zaPNiNvrJLPH5P3+5qF9XqcVGGqV5Jm0Er5f6TLpuwEaW
V3/E/H+/zLtuhvuAjZrjf/uVECyvPnVEw5L4nuEwlEHwhZyr99m72OhzdYVI
FMGjRhrNxa7EfmoVT10Jdi5/S794hI24/H//9P9/nvVOY5uTbIQ/FOWS/n/e
9z5/xfNsxJBrptYQ/sp0P/ek6wobnX37dSCGYPlhuV/PE9iIl4V2byX44qnn
0qcesFEOvcScT8SHI7pl6+bnbGSl9+fdY4KdY3+ESBSyEeW52Strgr/IH89p
/sBGL+Gy5ggR/8z/UhUOt7KRTZdylArB8gVrrPS72GhN8pNDmUT+XCQybHaI
jdZ+ii3TITgvazpwmygxl5P6a5YT+dfLNruWIz6KxCYyg5KI/FxocOPpPMlR
dHGVXaw4wVewZke7/ChK7xwfryHyvYwSOGWiOore7TSBpQRPbcOymUtG0d5X
quxAoj68vu0y99ceRb+Llx+haBP13R+RJ24yStRjRXITUX8hOnU1R8xH0c6z
d9/yiPrMC1DqrrcaReGPIv6bR/DC2Vyl5D2j6E1x4JihBg34su0Rur7Eek/T
dj2i/vUcNVNv+RP7b15mvJDoD16pAYX8U6PorzSpnbKIBt+WM4bKI4jf/8j/
XEL0k7yNhrscE0fRjt4qnQ4FQu/5iGMlqaNoQZHm5tvyxHlVtZfV0keRs0H1
ua1yNIjdcbB0KHsUuYSQQ67L0sDH6/ry8+WjyH/y0sJWSRosih/kPx0ZRYUi
6g4KIjQodTv39OU4Yd+X1WWhs1RwXjPP6e0U4T/fv4s7ZqiQ0rK+6AuJgxr4
nk9jiX6suCDmJFueg7p6Ogrvj1FBNktzXB9xkMKLB7vT/1LhxZl3DzeZchCp
IEs88w8V7Kztdppt4yB36Z7Yx8Q8uDZ66sUeew7aKBcjd52YH5KGVcdOe3NQ
ySBvQKWJCmIfPYfwNQ5KM/9uRv1AhYzb/OTqWxwUt688JZOYT6becZYNdzlo
4daB3C3E/Ipg5Gd1pXNQ2ZN/VO9CKszaUQ6JFXFQv3GBg3s2FabaH3Zv/81B
lfHXFLUSqTA42dnRrDeGqizeOE74UKHA+1rZ9rVj6Iv1IER5UiG81fgx3jCG
VjePJEq7U0G+MNX3qdkYqs7vvM7aRwWTk/tmzu4fQw/Oqp7OtaJC0kSLknr0
GHKbOFR2QYcKFpxaB//OMTTYLig4MiQO89xCjXr/jaGNzvvv0/rEoaNeW3X/
wBgiJfvUpP4Vh8C8K3+3csdQU61LW95P4r5zbJu/ksQ4wreu1IZUiwNv+OO1
92vHUdqtNX9vPxSHjIG3Nayr4yhCZrsI204c/O7YLj18cxzt1YodziLuT4am
f89UJI6jRaVvNruYiUNNKmPl2fRxdNf2psqLDeLAsXO61l80jiyOd4fxNYj7
USHP/uPfcbTyTtZ+Vb4Y/Liwqj1k3QTKDbk/8uiuGDzUqzBoNp5Aupf73Xxv
isHRdsereqYTaOF9V82VcWIgYhiOem0mkMKlndm3w8Vg2UDdA4eDE2jD7yNx
DG8xCLQ76qV7bQKtFtE5eGG1GLAWPGH/+zeBkqU/L8srpwDsvtD+t38CrVBO
fSF8RwH/ay6fu0YmkLWv6xXTAuK+K6r45PfUBGo6oaJdmkmBez3Rzr8kuajH
4Y2GWxwFdPIO1zbpc9HR+/yFXrsoYL1F51nZRS66erhV1O83GWIP5XvdV+ch
raHh5GvEfXoAsqMltHho4EKTZ9gPEpgrPso6qctDuhM6pzzrSUCqujVitZ6H
SArbg1RLSRCiHniSb8tDqSQHss5dEnh1ro7aeYaHFtsUJf22JsHmXXmPKI08
1LWRHXL1hSjw4Nk/n3OTaI1fe1+QuwgErv74Wr58CvE5p8B+2zTqzPl4pWGJ
AOVlGqV8J/wyffhb8orT00hY5NTq9GQA/beZOuv1dgZ1tj+jnG38jswfLvF+
oTCLWNNve5yPvsGnFrio/dk/hyLDtmx7/eAP1h7aJdFqLQJfXOzpFwtHcJGD
FY6xE4Fu1dlPBsMjeEuJSYCxvQiseLS6qlqNjfde1W175CgCrGN+Cdfj2Piy
Hv1ZoIcIkZeX9L7pjeKewHfbZUNEAKnWPPslysH3hWox1hkisNvHKnUkYQxr
eykZiz4RgUQlk9SM3DFcWCc19vqpCMi4Ob4yrx7DdWkzTqq5IjDyID7PgT+G
hZtbVgwWi8Bpue7mqL3jeG/U5U/RX0Ug6Nl2yhqlCUy8yWgfBSJQ0KIv0R3F
xY0lMZe2CUXAtEdsdVwyF984qiH+dU4ELkTP/7okj4tla/aSf1JEYffeRmnp
HwRHVgjZLFG4Jpw1mF3Bw9LTSWMqS0Whf+akDrOahyV7t/4KsBQF/zQXBceJ
Sfzl9u+9fGtROCN6YJOH+BSONT3zI8xOFBxSEcNRcQpLPMxrubxLFGwWH4LZ
DVOYcUClIc1FFCJMh/PXR0xhWtNoxecA4jwvp1RXBh9TcHLu0hRRsMpSH6mm
CfDPjaYWnfdEYTWj1HGJkgDnvhn6nfRAFK6vWrJn/woB3luwSVb2iSisyKE8
CtkmwC+yOwNFXorCqXbVBzbRAuycsnR9e5UoHMH1qyxFprG+8pfGxBpReB9U
Gv2eNY3piYFHHGpFIeikVaP8gmn8+mZFyudGUXDsutDquW4aS1zxnituF4Xy
b449McencVHIs48J46JQeGvpurbv0/jqpP2BnTxRcE10nrTvnsYeQTNcJl8U
OFbXlJ9zpjHrhPXyyFlR+GfupSugz2BPH/blADoJFpnIcxnrZrDsnjW2dotI
MNgttWMgfgb3fWvrlVAjQey5zC02yTO4ZOfF8Cp1EiSXx6rHP5rBPjbNL4y1
SNAewdyTXTyDS7eemr/SgASdf14wLX/P4CP6b3/QLUkQzim/IbJciN/XNz8v
Iurq7Ev1KVldIZbzHT3nbUeC1A82RmRDIcaPNJZV7CJB/hl/wVkzIZ6nEO8f
7kqCHFM/ryYPIfZ5lbVV14MEkso15xsPC3GJbYVihycJstU/teecEGLvaEHp
hiMk8Ij4KjkXJsRv+QclJoNIcPHh6c3Td4RYOuFcx6NgEuz8mrKvK1WIPVcn
vXA4Q4JRhXdLH6cLsdSRr3tehpPgszv7ZHmOEB+kDmi5XSBBB6OxQ/W1EBen
U2alogj7ZOxydhYLscevdRm+V0iQqLIU2ZcLcVGwwynVqyS4s8C6Y0G1EDPl
jm3/HE+CTUPv7n/8IsSF1hmjmgkkqO27ZPW4WYglMGvTv/skkPk+5l/ULcSu
+1ZI30wn1qtcdnbvF+L8yS1/Nz8m7PWfP9g7JMQueiGX056RYOOl4MzIcSF+
/eXmfpscEniHuL1J5Qkx/VCOrjCPBEscXXWv84X41YO/zXsLiPhKWosz5oSY
ZjybSS8mAe/E0e3XRGfxgZ+KZ4vekkDzplgBmzyLX55cY+tN9MWs5rj1/4nP
Yuo8GzX5DyTQ0bv/aTNtFu/P9eF+LCeBvLPQYQ1jFr+wvFAdUEn00XmxdXMS
s1i8LzVZ7RMJVFc5aT5hzuJ9F4v8Gj6TwH/qjsMKqVmct7hpc3gd4S/0cGuU
9CwWKxmer9tAgl2PpoZLZGbxXidaX3sTsX+FCdTLzuJcrtrb2BYS9B221S2Z
N4spNzZd3UD09bCq+TkX589iJx1Ht4E2EizLyMtdJjeLc2r89e92EP5N8Fme
TjDZO45q8YcEkwZZNAHBjuTMn7y/JPhgJWH+n/wszk4ry37UQ+Qva3vLWoJJ
G9vDHfpJMGNtnaVK8J7vk/bkISKfmtQLfxG/fx4ou/zlCAmiW+mckwSLyqwU
uHJIMG3iYjVI2LM727xWaoIEd7telKwj+Nk29/ulPBLg5KJ17oT9+tpLjBGf
BAq/dbgnCX2lrN9teJoE7KSdiYcJ/eaceyEwS4L4oy7Kmwj/1DcdUPggQgaV
wy/8R1iE3gLV/M1kMhwwqUgMI/zbldi2s0yMDE/cjS4OE/6fOOB0tZxBhrWV
u2O8iXiFgqK2KZMMW/r+3PIn4im+tPXTRyky3HaKNd1PmcVKfQ5ilfPJcHPO
N/AzkR8Pa+almymQoaI6vttOKMTa2Y1QpUSGUfus9tcCITb2tztbvZAMMpYs
M0WuEFc5SClvW0Ks73XIVBgTYjvDusJPS8kwZn4liDsixO4zluM1mmRI0Edr
rfqEeLCDcd3yPzJcTKtXrfgnxIEfPul8WUmGvY0hDqp/hPhSlPnh2tVkmFr9
4Z7nD6JeD4nTbAzIEBp57dEeol6SLCse1RmSoU+vpXt5gxA/l97y5+tGMrzq
LZpxJ+qtPsnYsdGMDAfFEMckX4idQoXcndsIex4ivWV5Qtzl8u5mkyUZ6paa
h/dmCfGE+vqv3+zIUOnI3ky5L8RKuQZmrXvJcKI97MejaMIf1yf+7jlABsf5
11aGRBD+CHx1/rsLGTaHRgdonSX8sW5VyY+DZFALPV+97Biht1xb/5cfGSwk
FphF2RN6Hw027D9BBrkkfquFFaE3OutYewAZtvZYm/WbEnqtNZ91BJMhc/XN
vHIDQk/rUrU/EWQQjlfHdcgJMXdQWbongQxNa16df/Z1Bt9K7a1KuUvES9pj
LqxiBq+xfX3OPoUMjac0LLTezuATL63Z7x+QYeltfWPa4xk8HBxel/ycDFXP
0n7/CZnB3WI9sTvKCP/8GO5iKs/gi4UvTWkVZGjodhh1Zs7gpYfOzZRWkeHk
GTXOJZEZ7PZF8ah2LaHPaH+nW880br9haUn9ToYr6p0zBnnTuHnRC3rJMBkk
OYfOHdw4jQMbQj8EjJIh3vCnr+HKaTzvwvYQrXEyBBmP5ncR82xHz9++O1OE
vU3uQWWzAlz7XL7an0yBPAmtvCelAlyx7myUphIF5nwedcsYCnC+vTn5likF
lidffVhMzONoy6JIVXMKUOvG/pGnpvD+LStoj7ZRIE7u8ZR29xQmrZFgFthQ
wM494bMKnsI2sl/lvztS4GlfQZ7viSncV79bS9WXAmsC9V+xv05iZRuvHRm3
KYBuSpX+CeTh4a2tTdqJFDhdR1fXcObh95ssducnUWC2nHV+mzkPe63U2leZ
RgGv4YQAAyUefiU5crDvKQV+Dz67mvKWi60+BwVrl1Jg9Qpb/hvBBD5nEZn2
uocCK3lNTp3u47jR2We/Xj8FNLaFNI9bjGP1IEul54MUCGCK+QzrjOOaBzI3
00cpUKWesiFeMIbnT6dG3RBQ4FjL+rg78WM4M7vA9zhLDJqwtHRFIQfXy/Zt
0F4rBl65fc31PWy8pH379/RIMQhoU7Jtsu7D6w0v3lJaLQ7joi8y2KrVeP/C
r3zRJnFwMc8olSloRSwl//y3zeJw7H7hsY2239GHeXIngr6LQ46xR/ymvu9o
GX1fX1+7OAynaDFKlX4i9nhPy1fincOZ0Ft+6/QvFPFp9lXqrDjwXZQ61t/9
jTIDdfzWaVFBoWdvwJxRN9p7rGHFuDYVrnf+Mnt3vhsxDwd2P9elgp76kQTb
mm7k7/Jm/2IDKnR8ukWb3NuDNmw3s6QCFRwCDtauPd2L6hY5azbvosK2Tx+s
e3L7Ebcmruv4eSoM5+azvceH0S+JZp+ZC1R4sow1ZrlqBJVZqbIvRVHh8aq/
R/l+Iyi+Lmv63hXinVox/DSnfwRpNVbNr71NhYX+Vx0DfrGR8w9R8xVZVFjv
bbfjVNsoquwNevankQoaX7SqZlPH0HPNklW+zcT53mM7xIrH0M1DlKKpVipM
9mbr9zWNIdfBGx+l2qlQt8NyZjN9HAlGcts39VKh0aggwNh/HOny+qWSpqng
VBscrLZpAiVSnAN3qtPgUPyXqZ+vuWjWQ8GgYRkNis2XGkXUcNHB8nqu7Qoa
fO9sezDXyUV6EVtOWevQ4EG16ryzDB6qntM8bWFEg3+ZZrZBB3hoUjB+ztiK
Bq5LlflG0zy0f282lNjQQG/tpn5N1iQqK/YS3biDBrev8O4MLp5EV4N/RKzb
TQPs4ufct3USLeOVRuq70uCF5bGfxXGTaDfn8hWtQBpI+muUX5s/hd7ZbbF6
epIGctf2Bd5Un0JqeTOSmiE0EM59K/TSn0IjfseuaoQR33+C/hn7KRQ55HB9
cTQNns4cr9l9bQoNWLJ2psXQiHenblND6hSye1YluzCOBgs+uY0rP59CqofX
31K5QQP5TQll8tVT6HXvojvyKTRgpHo/zRVOIWXzH3tu36PBxXvvghMYfBT+
+Ibi/Ac0yAptm9qmwEdWnmJJMo8JPRW+zvJ6fPSvayBFMo8GT+Za5MGFj7ab
ZBy48pIG2f1yZZcO81HegwMLGfk0uMSSqE0K4qOzrvVp1DeEPbdNXdWu8NG8
jvyHpI80uOB9d+mrV3x0VTI0tLCSBjcezkYtKuUjxgZTx6OfaPDmwPRlq2o+
IiU2MlvqaNBl/Ca3t42Pwirv9sU00KDGbWfgrm4+Eky4lqNvNIiV0VO9MMJH
YzvYwU9/0ED/rpvLAhEB8gsvsHf+RYNtiv33L9MEaCAnVGdeJ2Ff5CLZfGkB
+iMh+e/sPxrce7C8xWKxANVXaNrasYn8WX/SzGWjAFlNsFeIjdFA472zx3sT
AapWK6S8maBBVDDlYKeFAOFzW98sFdBgpd2LoN0OArQ+R/L29xkaONvVrc9x
EqCCX03H4uYIf29psSx3FqCcde4akxQ65GpGvVf3ESAtnxUiz6l0Yl5rth8/
KkCPE0Z/ujLoEMPKLgw5LkBqFYX5ckw63FVbrIMCBSh1PCy+RooOfxX0Fn04
JUCKamZHzsnSQVi08vDcaQG6Zcc005ejQ/MBJpsfKkDS574t7legQ8GA99W8
cAGKzU6eTlWmg9nXMyuWXhAg2i/3lp0L6BAtpvNwR6QAXWRovaAupsMvaYm2
DZcESGQd58o7NTrEi1kU/okWoDPeRV4nNOiQEv9ReUuMAPFun9u8TJMOrjsl
BlyuCJD/RzPVNi06XEc7GEaxAjQyxpy8tpIOEatOuX0m+PCS5gZTPTq8T5Ro
UYoToB7blOf81XR4oWtlu5Rg9zCPSzkGdJCLXp7fS6zveK7l7mFEh09KG0e9
CHZq42xU3EAHK/Mf/feJ877RixVqN9FhY5do7G3CHjuj8LHzQAfJ9KMfTC8L
0Bcv89q1W+gwHXcxKIfQY3GblTm4lQ4qjoduNRJ6P5Y3R9y3oIP0NJvxgvAH
jKUc2GVJhwWKjyq3nRegd4sPGjFs6GD7vTY/JUyADG3/m4ft6KC1yqfq6RkB
ehk6NhxgT4ck/n+Dx4MFSOd5cbXmbkKfaKzMGBGvZXSLsBv76LDN7e5/ar4C
9NBQysncmQ7Bc23kBiL+C71a1sy40oEz2PNk3UEBki8/2O/pRYd95NfqRnsF
6Abnv4/Kh+iwQ4PaV0vkF2vx+L2vR+jQs9TMaoGtAImFnndYd4IOL+PIzX1E
fr7mDPFxAOG/mFzHFiJ/D3o5ppmdpMNlq7dBUWsJvba6A/Zn6LBWNO2QzgoB
CvyYdO1nKB3SS6uMlqkJkPo6cQO3cDo8nx27/luZyAe19nN+kXSYWBD+I0VC
gPTvWGhwL9EhlCT4eI8sQP8kXteciaEDNf6Jvsc0H5lyY+QuX6ODoWHQgzUD
fESpNnqWfpcOhW9Gv4995KPXGzPstFLogBn/6PS3fHTwhRQv7x4d4g49q/+T
x0cfk3qgNJ0OEmbb9NuS+eiC762W79nE/vL94iN+RD+YNyrKKqODU83TS8l0
Pnp5ad+TWx/pEKtnVdcxPYXcZyqtVKqI/epKzbqHp1BZd+odzS904I09YWxs
mEIRRZYrt7QQ+ZTs9VL29hQSdX7iGDxAB7VjRjZBMlMor1F2dnaIDuPL5Swm
5iaRq3lYeiSb0Cu5qNBwZBK919s1cmOCDludZA9I1kyicDL5YvYsHZbs2/aJ
HTaJRJ4653bJMgDt/3mouJ2HKoda/dLkGFC54Ip5RSUPxert0NmvyIBQi8iL
cbk8pFC0Jbt5AQPYqviHfTgP6VRpPqvWZMAfi427SxYS86Z77HGOMQN4Phmc
VbZcVLzk0r3ThxlQuNU/2jx8HIV5ijgb+jJAPVd4xtptHJk+DVkwcYwBjnYn
ExRMxlG93tEU3yAG7C8sPc0njaM+tCPJNZzYP+Bww8z5MSTvrJJglsCA45fG
AiyDOMg/KTdOtowBeXNVi+Z5j6DCmaRLZR8ZIB728men6giacY4671/FgLWl
DkW2jcPo0tIDQY1fGDAjTFVU3TiMUp4zDtxoZUBFk2NwmMQQqij11JYdZsAG
v5e5y5P6keJflc8yihLgumvwhEPoP1TyXzRNxk8CxqJGlxlqNCGZ7f7aESxJ
6BlO37dSrhXf/yAlsV5GEiR1PrVsrWrFeuuy+znzJCF46zRMB3/HNpp9j92U
JGHlfuvsVW0/cIy485LN6pKQrTXsGpb0C1PKt8mLrJcEqzsGNjKifzBvwxKR
ME9JWDNZODaj14MjX5V2GPhIQuaUk9eS8z14/n/7S4YPS0Ko8a37vfU9eI3y
ndMHjksS9TjVZ3+sFx+fkuRuPCMJjz1YfpFP+nD/66n+6XhJKK7J/qxCGcS/
VtY3hbyTBH2DulPvD7Jx2qBMKBlLQm1Ak/eKh2zs/tR+WdwHSVB9O89HpZON
+9Vbg+9XSsLnJzZbP/83inkqHQuq6iWBPHYs0evBKJZhDHnP75aE3hsM59xw
Dv5WtVLmXq8kMJlHC44nc3Bi5LE3ywck4WGI1PuRfA5eKDouuYEtCX9PRNMW
DXCw9hT/hRuf0LNFGL7Fdgyb9VBncphMsNv4St1QchzTM7Y9MpJmwtzSLkac
2jj+4nbFpkyWCSewIDzRaBzbt7MeNCswgdFneaLOYxy7fpMzm1nChD0SfV1Z
BcT9+sYedqQ6EzQqv5c9qBnHvbZ3E6WWMyGxrGNse8c49vusOqimzQSTrl+v
X1Im8JmypfHb1jLh9kCRbK31BDYO91zXZMSEv90tpZYuE5hk/KRr/wYm3FH9
S8y/CRxdrGVwHJhgYGCh1nV9AifkrfqZsJ0J887ZMdvqJ7CTX8CFxdZM+K+o
yaamcwKraudrZ9kyIUEHq3iNTOD0J0bnShyYoExJkXjI4OK8e0j9nzMTCgqa
jqohLh4/PU51c2OC+MMANT1LLl6758lguwcTkm54mwzu5uK3UlKvWn2YgNve
ZPn4cvHsYFmCwxEmSMfGH9YK5mKoPnm6wZcJ7vHPLiRGcHFleMfmz/5M2Jv6
l7hQcTHtwA0NiyAmqFv7HRhI42LLdWb0ilNMyE1f4Eh9ysX1nOz60rNMqN7v
ecjkDRfPq3N7veEcE7QoGXTXMi7enSWXWHSeCdt/71HQrOHiNvdQl5dRTJAY
8Egu+M7FC9GqLbqXmaAIbRlnO7nYVaV72fMrTPBbxDAZ6ubi9MlExoqrTDjd
E4nEhri4p8lq5FE8E1QNFxyp4nCxZp5Io9pNJjyW+3lz9SQXH4l9nZ92mwm3
KskxZjNcPGqqGno3iQkh0lMaPmI8vGZJvat8KhOuL77lH0Tn4ZPCC6Y305jA
erzlpxaTh4t+GGpKP2RCPyd5TbQ0D0/nD0rEZRDxeHV6d9w8Hja+kcamP2GC
cxNVdb08D4f72TdFPSX0WxU6X1Xk4fLt1ELycyIfaZaCy8o8LL78bVJ4DhO0
i7991lbl4W3kY2HCPCaUPyp8cXIBD8d2qrmffsWEjcuyrngv5OG6ty1bJ/MJ
xoXr5wiWSYxZEVhExGPxlgebFvGwQ6Axk/OGCYMV1HQ1ghPsxkZ9S4h8vKui
kUOs/6H9+NsAZsLvG6PM38T+qvS9Rd5lTPiwZ/fWIuJ8l25myr+PTFjTfub1
WhUefvjhwzm3KiaUUjlb9xHv1X+pQR4dn5jAtMrs1lDg4eWnV5jv+8KEM7ZT
4Qnzefjw7nat73VMyIhOFc+W4eHnq6+zdjUwYarzrdchFg+zWVvHGpqYsNXu
943PDB5ePTjVbNPChPu+pLAmcR4Oqnpe/Pk7EzhvIlXPkwh/p7umWrQxISdx
w8FvQi4WnJt/vqKdCfU1B61qp7h40/7qgya/mTDc+rL2yDgXhxudtcBdTHD0
2daVO8zFZfP1tDd2M2HdIxx5t5eLLWrvjBsMEPV7ieN34CcXxzy1bH05xIRD
+1a8Mmzi4trIuTe6bCYE8zZcKPzMxTuNvSNWTDCheaPatyfE+/xA7lqZBbNM
UJlJ77O8w8UFe6dY9SIs0P/kqXcylotZ4m8kL5BZkHRM2nrteS5+v38TrZ/G
gmpehEPwIS5WY5jOvZ7HAtNNEsbiBlx8Ol9M6C3PAo0lt97/WcbFTa5VAmUl
FiiECYftFbn4YuF2XvhCFjQWzG+f4U/gnoM7hq1WsECxcuqqZxHRX6TnDc79
x4K6zQt+CR5P4Dtvv/W91GFBxY36NZq3J7CFrOM/RX0W6E2v+mVJ9Jss7Nz2
z5j4fcTW0JIlE9hP+einsw4sKNh3//HFE+O4smJlle4eFpBdyE+KnMbxohPs
j11OLLAYpShe3jyO66v831u4sMDI7sQrEelxvDoopHD+YRZ4pTio7cocw5Nf
ox49P8eCK4/sG4YqOdjujEW6SwQL4vaEpss/5eDMZYwHspEsmB/QHP03hoP3
hsalBMewoGGxyUUfaw5+p3XrpultFpy4lR66sm4Uh0c+OP8riwWFc59j14Wx
MfMUdbtbNgvYeVls3Y1snOTjK9uTywLNicjOm/wR/MpyXTr7NQuWiN0/m+k/
gntkGj6SMAvKL4WQ1JyHseU9EdqKJhZE385/ZqkyiOULXa4GTbNA4teB1Nq1
PTi7b0Eyy0oKwm4aftkX1oKjUyNdO2yk4OSksevF3GZ8cOewRs4OKdjakjq0
8Pc3rPruXZ71Hil4eP7q9hLUhGOu7auMdZeCEff+lXZjX7HP2rscRogUSGuq
+mm8LMNqF+dbUB9LAdZP96xen4dmjc4yWzOJ/SSs8e/br9CP4b+Nj59JwQX5
O2pJowUofs+rA2YvpODQsf3+iRklaE5rZ0DkOyko3h74eWVEBfrVcO0euUkK
5n5V+/d6NKCiqEmPpmYpaNJYezR5bSO6tcFlRfp3KXj8z0HQQWtClo90Xpt0
SEHeu0y/2Wff0Jvg2k/n+6WgxuN6lehQK0pYaXBtx5AU+Gz3D7v95js60ZXi
sIQtBa2xY6NXon8gTaujne8npKAxPjkpRq0NUUS/ZcRPEv56Up98aaQN/c7f
cNhVIAU/qiWH64t/oXeH03X1hFIgRdflul5sR3cWSXDn5qSgrFxZdbVNB/of
S4fWOg==
"]]}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->True,
AxesOrigin->{0, 0},
PlotRange->{{0, 4}, {-1.8804233904528964`, 3.0267952139563308`}},
PlotRangeClipping->True,
PlotRangePadding->{
Scaled[0.02],
Scaled[0.02]}]\) |
|