, J5 P8 Y5 Z$ D) t3 }" i& yQ<w> :=PolynomialRing(Q5);Q;: I- e6 ?' u& T+ M `5 f5 ]
EquationOrder(Q5);% s( `3 w1 r8 d
M:=MaximalOrder(Q5) ;9 D" |; E# i7 v1 q, f9 ?
M;& l( B2 D! r( h+ S0 G/ l
NumberField(M);5 n- A& H# l9 E6 ~( a
S1:=sub< M | 1 >;S2:=sub< M | 2 >;S3:=sub< M | 3 >;S4:=sub< M | 4 >;S5:=sub< M | 5 >;S25:=sub< M | 25 >;S625888888:=sub< M | 625888888 >;S625888888;, K5 Z! B# U7 s' R. u+ z
IsQuadratic(Q5); 4 ^: F1 O5 _; j+ m. D i* yIsQuadratic(S1);! D* y+ @! i s9 c7 _
IsQuadratic(S4);/ s {( \4 T) F1 o9 H3 |; }
IsQuadratic(S25);$ c3 h4 H6 J. P8 I6 R
IsQuadratic(S625888888);2 [, y( l3 g- G* H* Y* u1 t; r
Factorization(w^2+5); / |! f1 r5 {4 q
Discriminant(Q5) ; % H1 ]5 H/ D( M5 CFundamentalUnit(Q5) ; 2 R$ }5 J" x' l* F2 Z5 p) e0 o! Y8 X5 A! @FundamentalUnit(M); / }) Y4 W. J# ^" G/ QConductor(Q5) ;0 W; Z% p. h- l$ R" H8 a
$ [# E, ~$ U9 h6 a# f5 gName(M, -5); 5 R/ G3 t& ?& r( z; f* [4 A8 n: kConductor(M);: G1 k8 }6 q9 ^* Z3 `7 E
ClassGroup(Q5) ; 0 X6 c1 b; `' T0 e4 s# k
ClassGroup(M); 9 @% H) ~ F$ X/ t! h) p7 dClassNumber(Q5) ; + G- ]8 W8 Z1 x0 W. r) WClassNumber(M) ; ' P# U: f# f! g5 O& @6 y" B0 K- G uPicardGroup(M) ; ! Q" j p5 H. b4 v: wPicardNumber(M) ; & ?, c, M, p0 f; M& W! [5 p. d5 J4 b, P) V- W- {( w, a
QuadraticClassGroupTwoPart(Q5);/ G6 x( k0 I: T1 Z% O+ e/ B) _$ S0 v
QuadraticClassGroupTwoPart(M); 5 A. i1 u7 A/ h. P0 `8 XNormEquation(Q5, -5) ; + O4 f8 J* j' m; p8 N, oNormEquation(M, -5) ;' B6 ]- f. N7 G( p
Quadratic Field with defining polynomial $.1^2 + 5 over the Rational Field9 o, g2 j; e5 i% g
Univariate Polynomial Ring in w over Q5+ }& W# g' u) K* `0 Y$ D4 _
Equation Order of conductor 1 in Q5 2 {' A) f+ w) u% GMaximal Equation Order of Q5 , x K4 x' q1 H9 x8 g- i) t% VQuadratic Field with defining polynomial $.1^2 + 5 over the Rational Field l s! _" t9 X# j
Order of conductor 625888888 in Q5 * n3 K* `& v. [: @& B+ Z& | t1 b, itrue Quadratic Field with defining polynomial $.1^2 + 5 over the Rational Field ; j' @* j5 D- J" w+ `true Maximal Equation Order of Q56 b ~4 {/ d7 y$ P( [
true Order of conductor 1 in Q5 + N7 }( J6 i6 K" ^1 p; x' \/ ^true Order of conductor 1 in Q58 ~& G8 y, _5 [- ~8 K+ A
true Order of conductor 1 in Q5. A4 l) h- q2 g4 f6 R
[ : \; q# |% |; l6 f" Y$ B <w - Q5.1, 1>,+ |7 V/ D! o; h" J: j
<w + Q5.1, 1> & e0 R& q |: o/ w' H0 F- Q8 N: P0 L] 4 r& L! Y* p9 a( f-20+ _3 o8 F( z5 e" |
* h$ k& ]3 T! n8 s' f( T
>> FundamentalUnit(Q5) ;8 C# ^; r8 Z8 u% c
^* \- {8 c* w( q
Runtime error in 'FundamentalUnit': Field must have positive discriminant 1 |1 V) z! f q: }! P. \# A. J+ {2 s. G: p
8 f6 j) q3 v7 Y4 N>> FundamentalUnit(M); ! ~$ X) `2 n+ t5 z5 l$ ^8 N ^, x, a7 D) F$ I! { Y6 I- R: V( q
Runtime error in 'FundamentalUnit': Field must have positive discriminant, y4 u. j/ I: t. D8 ~8 k& R
; ^! b$ [& b( \5 Z/ ^- l
20 v: Q' _' [, K! G
$ S i3 b% M- h! x; [7 D
>> Name(M, -5);* g f( `/ Y# m- { \. k+ c) H
^ $ T1 h* U8 a/ b4 w1 j/ YRuntime error in 'Name': Argument 2 (-5) should be in the range [1 .. 1]/ r! Y7 L, e: _
% Z3 g6 g9 |+ U9 E1 T
1: G2 l- l3 I. V
Abelian Group isomorphic to Z/24 {& r3 |: @) t
Defined on 1 generator 5 O! B' z- w9 v7 uRelations: . d) E) o- {3 E0 B" Z 2*$.1 = 0) n+ T: w4 Z T/ T8 m
Mapping from: Abelian Group isomorphic to Z/20 ?6 o5 N* _, ?/ {. z
Defined on 1 generator / [0 @+ A) { k4 E& B$ _+ D7 ~8 m xRelations: ; H5 A3 z2 n4 S/ v/ L1 t 2*$.1 = 0 to Set of ideals of M $ q" c7 J( |5 ~7 h' q) wAbelian Group isomorphic to Z/2' t, W, o1 N/ Q9 W: \
Defined on 1 generator 9 U$ `$ z- H% L% {9 cRelations: : p9 T# s; v4 R) {* R! Y 2*$.1 = 0( l/ W% c" M ?# T) t/ C: C
Mapping from: Abelian Group isomorphic to Z/2 ! Q5 x1 j. W4 F* V$ i! o6 |Defined on 1 generator) C$ b. z; T; r
Relations:! Q9 {7 Y9 P1 {* {
2*$.1 = 0 to Set of ideals of M 6 ~ }3 S# g- z2 , ` ?& ~& F7 L& P, F" ?" ~2 & _' C% f5 Z4 X3 e C% z1 \1 [Abelian Group isomorphic to Z/2 + i/ G$ P+ k; w8 q: m9 P/ jDefined on 1 generator # e5 {: f" d; R( U. L& R" TRelations:3 K" P$ l! [3 r8 N1 U3 `, {
2*$.1 = 0 * L1 ?8 z$ G" r! R4 F& XMapping from: Abelian Group isomorphic to Z/2 X6 v: M" y# d& |/ kDefined on 1 generator ) ~- m) u' l* Y4 uRelations:& h' D3 `+ y! T. i- b" Z. T" V
2*$.1 = 0 to Set of ideals of M given by a rule [no inverse] 1 @1 n5 O$ a# ]" f' J0 ?2( W6 a# }; z0 x' l! i8 ?/ H A
Abelian Group isomorphic to Z/24 r& \4 K$ B% w" P: J( `9 }, U
Defined on 1 generator 1 Z; \1 C w3 E3 y. X3 Q1 jRelations:, n, `5 @/ @ M7 `) [) f
2*$.1 = 0 % g x8 E/ K1 b/ Y( g- h+ m2 aMapping from: Abelian Group isomorphic to Z/2 + t: Y. I2 @* i4 J9 u8 `8 NDefined on 1 generator " {9 {, J5 o' P, {; H) RRelations:6 m: `. L* p% E7 _; M0 M- ~
2*$.1 = 0 to Binary quadratic forms of discriminant -20 given by a rule [no 6 H% Q2 r" h1 K5 D7 @( @7 A" K5 I' {inverse]8 n$ q% o, ]" ~3 M6 C' k) I& t
Abelian Group isomorphic to Z/2 & Y& d3 p, l& b9 S" p7 ZDefined on 1 generator . e M; X7 ?" n; k: b) GRelations:9 |' y( p/ T7 w7 y- m
2*$.1 = 0* E) g8 X0 r6 ]8 a; I
Mapping from: Abelian Group isomorphic to Z/2 4 [/ @! v2 U. {* h9 Y9 SDefined on 1 generator " Y1 c0 t8 P7 y7 N$ h( Z) ~Relations: b4 b' v' x) T8 j' M% y5 K3 b
2*$.1 = 0 to Binary quadratic forms of discriminant -20 given by a rule [no 5 @2 J9 f( ~( S8 D: o1 a
inverse] $ I' w9 V. o, E: jfalse 2 Y5 q! g, g6 j! Gfalse; N( S1 W% t l' T, [& D
==============0 g8 w' U; @# h/ o- r7 e4 F8 l
% E, r/ `" P( f' ]0 N8 ], D0 \7 b0 X7 U2 s
Q5:=QuadraticField(-50) ; 9 i( s- [" ]. X8 ]0 `7 W* tQ5; & x7 q c# \' {, O : u5 w* a- D, Y5 {$ |/ d ]6 [Q<w> :=PolynomialRing(Q5);Q; ! r n- D X& u# @. @8 u. fEquationOrder(Q5); 6 M2 ]( {) U# L h9 JM:=MaximalOrder(Q5) ; 1 p4 j" j$ O) ~; H& p$ k+ NM; 0 I9 S" _1 I" t( O1 fNumberField(M); 5 R& J5 J( T+ W( [& AS1:=sub< M | 1 >;S2:=sub< M | 2 >;S3:=sub< M | 3 >;S4:=sub< M | 4 >;S5:=sub< M | 5 >;S25:=sub< M | 25 >;S625888888:=sub< M | 625888888 >;S625888888;) z1 J# _4 l. g- ^% n+ G
IsQuadratic(Q5); 4 K1 n, c0 r+ F8 F: z2 C; y; ]IsQuadratic(S1);/ ^' B/ z+ Z% v( Y( R3 P
IsQuadratic(S4); , b d" m# T- bIsQuadratic(S25);5 F/ k5 H( \7 C
IsQuadratic(S625888888);* p W- [9 p' @
Factorization(w^2+50); + j6 y% H# l; P! p! d6 f
Discriminant(Q5) ; ! `/ D* N& a+ q1 `' ?FundamentalUnit(Q5) ; 7 U' ?. \. K9 X* v4 g U) f1 wFundamentalUnit(M); 7 v& o, O4 J( X7 H+ JConductor(Q5) ; 6 S# r8 A1 W% y* y1 H7 n: L) f- d% o3 `7 m7 y. K* P1 {) s4 q4 S
Name(M, -50);* L2 }: T! X8 s: [7 r4 k; `
Conductor(M); : U9 J- i) z F+ z8 G/ OClassGroup(Q5) ; @& @# [3 X* O1 x% h: }ClassGroup(M);& n. J/ a3 e% Z/ x" z. I5 A
ClassNumber(Q5) ; + Q# t1 G- b* m0 Z. m& h7 D7 \ClassNumber(M) ;, I, M0 r2 q, y$ G7 e/ {. N1 s+ L
PicardGroup(M) ;1 \; d% h" w6 e. X( E \* X4 u# p: O
PicardNumber(M) ;5 v) P# R, S: m
q: A2 ?8 Q* `+ T: n; s$ l
QuadraticClassGroupTwoPart(Q5);% d: T5 _0 z4 M/ _# R! C
QuadraticClassGroupTwoPart(M); 4 m; V* ~" f! b# E0 I, HNormEquation(Q5, -50) ;0 P1 c$ }' D* c0 }+ i1 h p6 b" ^
NormEquation(M, -50) ; + c1 L1 M! Y* M/ \8 `/ y& w 1 S2 J9 T' j1 t+ \Quadratic Field with defining polynomial $.1^2 + 2 over the Rational Field ' j! t- w7 I( M/ {5 D$ yUnivariate Polynomial Ring in w over Q5/ `! W5 }0 [/ ]
Equation Order of conductor 1 in Q5 ' Y r3 D- c8 a" N+ x: IMaximal Equation Order of Q5- U% p/ P& p- U# S6 g$ \, C6 l
Quadratic Field with defining polynomial $.1^2 + 2 over the Rational Field+ i6 Y0 f' @* a: R- U3 i, [. c
Order of conductor 625888888 in Q5 1 C% P @! C+ \5 jtrue Quadratic Field with defining polynomial $.1^2 + 2 over the Rational Field9 m- |0 t' B2 }/ K- C
true Maximal Equation Order of Q5 0 b0 g6 e8 F# K1 A Q( X, Ztrue Order of conductor 1 in Q5# F; v t+ V3 a% E5 D/ [
true Order of conductor 1 in Q5: Q+ i1 J2 i! l e
true Order of conductor 1 in Q5 0 [9 F& ?' K& q* E; p! m3 t[# D, f V; D7 b* H
<w - 5*Q5.1, 1>,) {1 j& H3 D3 F# T# o4 B; j
<w + 5*Q5.1, 1>/ i) y. F( Q7 q6 H% ?; Z8 W
]: T9 C& W+ q+ u [7 u
-8 ! w9 c! @' Q+ z 4 {0 c; g6 f q+ {% Y L& o>> FundamentalUnit(Q5) ;2 r, M+ ?# o* k( [9 P4 M! P2 v
^; T8 @' b- ]' p, e' C; O
Runtime error in 'FundamentalUnit': Field must have positive discriminant 3 @( s' i8 B% g3 B% |4 n 5 z/ z1 f; O/ f Q! }) \ 9 U. _, R' }9 |( s>> FundamentalUnit(M); 6 C0 z+ f- y: e ^ 4 c+ ]" S8 E* ~: I# v/ p* q5 ZRuntime error in 'FundamentalUnit': Field must have positive discriminant 7 v* T0 J" E' @3 B0 x2 f0 p0 y! U; e- ~" P
8 $ Y6 w' z4 j: t4 y: ?3 y! Z 2 ? Q q0 b) U+ I+ b3 L1 N4 f3 ~$ I>> Name(M, -50);" C G D. {% b+ C+ l4 P: K
^ 4 I5 ]3 \4 A% e8 d! g7 M9 DRuntime error in 'Name': Argument 2 (-50) should be in the range [1 .. 1]" r5 |) T0 ]5 G+ t
Z) u$ c. _% _; h' C4 t* u: C- g6 o/ g1 & }1 `4 p( X' R. U W$ ]Abelian Group of order 17 T: E0 v+ i( @; f; I- |3 l
Mapping from: Abelian Group of order 1 to Set of ideals of M & t) s. m1 e+ s( |; i, v) K* v3 v @Abelian Group of order 18 G/ L( u5 E: A& g( s4 N
Mapping from: Abelian Group of order 1 to Set of ideals of M# G3 u4 {% [4 S& N4 @. v
1$ F* g* B' x0 u2 `
14 G4 f$ p! A' W. m
Abelian Group of order 11 d- q/ d E' T
Mapping from: Abelian Group of order 1 to Set of ideals of M given by a rule [no + k) D( p( x; g- A4 V9 G$ \inverse] $ f, r1 }" Z' _5 _1 , L) q, U5 Q. mAbelian Group of order 1 5 F6 O4 X+ X& JMapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant 7 `, R; T1 X$ ]/ v+ \! M$ |-8 given by a rule [no inverse]+ r& n) R, E8 T' g+ p; J, |
Abelian Group of order 1 a& X$ u+ Z6 p; }8 N7 n0 ]9 ZMapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant * q% r2 |) ?7 S* _& D6 e-8 given by a rule [no inverse] * C- e- v# \) \0 yfalse' M, V6 m- t! c, y
false: C) x/ f3 `! M0 W2 p& ~7 [
4 P% q) k7 D W, l: NQuadratic Field with defining polynomial $.1^2 + 1 over the Rational Field" x- d! d, ]& |' W1 [" E
Univariate Polynomial Ring in w over Q54 H* S% I q5 w) ]+ b& T
Equation Order of conductor 1 in Q5, g/ b- [% Q; _; ^+ L/ s( C
Maximal Equation Order of Q5 H X$ Q. d6 h. _# q9 P! u
Quadratic Field with defining polynomial $.1^2 + 1 over the Rational Field2 T8 O9 s1 n1 G( n- B Y7 ]7 O, G2 H
Order of conductor 625888888 in Q5 6 D, F% q; _5 n: f, w# otrue Quadratic Field with defining polynomial $.1^2 + 1 over the Rational Field" B, M# X6 D5 ^$ l, q4 u" ?
true Maximal Equation Order of Q55 o; g) R) ]( f8 v" S
true Order of conductor 1 in Q5 * t7 S0 G9 j6 ftrue Order of conductor 1 in Q5 z; ~* T' ]% h' K2 j6 C
true Order of conductor 1 in Q57 K, {. E, U: [8 E. {
[2 }/ U* n; ^- ?& [8 ?: R5 n
<w - Q5.1, 1>, f4 t- Y2 P0 E- D7 ^# }
<w + Q5.1, 1>" C. t, Q8 I3 B# K$ p
] 8 }( e9 {- [- Z: Z-4" \8 ]+ Q5 t3 A7 f; ^& L
7 Y* m! }+ Q$ D {% e. P- T>> FundamentalUnit(Q5) ;0 T, G/ H2 R$ q: R. ^
^$ A* }- Q. q0 Y* j
Runtime error in 'FundamentalUnit': Field must have positive discriminant ( D4 y" `" v3 W1 i: S 0 l# f/ {4 {! g# f: }2 _3 { # f" e, t, F4 X2 X5 |! J>> FundamentalUnit(M);6 E T" c3 Y% ^- O
^$ s0 X" A4 S- V
Runtime error in 'FundamentalUnit': Field must have positive discriminant" L/ A r, F: R! l* Z: k1 y
% G7 c+ g* {. ^8 c2 W1 @: u
4& C! h; _3 I5 X3 \
7 w' A, \! k% Y& T3 ]
>> Name(M, -1); b6 X" N5 G m# w/ W
^ ! [2 {( }+ Q0 z/ GRuntime error in 'Name': Argument 2 (-1) should be in the range [1 .. 1] 7 m0 ~2 Q0 T$ y3 ?$ i( V $ s Y6 E1 t; D- g; ~% |1 , n- w: p3 p2 }* QAbelian Group of order 16 s2 n! K6 s8 a7 M
Mapping from: Abelian Group of order 1 to Set of ideals of M + S T6 |: ]' A5 Q T5 h# v5 sAbelian Group of order 1, B2 l" f# a* i
Mapping from: Abelian Group of order 1 to Set of ideals of M ; Q# N( T! [$ S+ i1 0 y* C1 l# F2 v; y1, ]2 q$ g/ Z. b
Abelian Group of order 1 - x" j* S9 h4 L, t$ k0 MMapping from: Abelian Group of order 1 to Set of ideals of M given by a rule [no # V2 A) X0 F- ]0 G0 Iinverse] 7 P7 Y$ h4 i0 W! N15 ]! F* C5 M7 z" S7 I
Abelian Group of order 1 ) {) d3 D3 x: ?( T& pMapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant4 c' S( ]+ l/ ^7 ?
-4 given by a rule [no inverse] ' L$ t1 x+ A+ }Abelian Group of order 1( X B* W& n @0 Z
Mapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant 6 k) Q) |9 T% Z8 c2 f-4 given by a rule [no inverse] 1 O. P* o9 `1 b; e' S! `false 5 A6 V4 N, Z) Bfalse" }5 ?) M/ a3 }' v
===============: w5 ]. k, G+ ^6 C
6 \: Q9 M, Y, Z4 X
Q5:=QuadraticField(-3) ; : |, {/ B8 [$ J* o% D, x2 x! qQ5;: b$ d% r: x. |% f$ A
! b7 u; r% ]0 `$ x5 l7 F7 rQ<w> :=PolynomialRing(Q5);Q; 3 v; V( G0 n( H: t& EEquationOrder(Q5);' a* M) F5 K2 @" a$ @: q2 r
M:=MaximalOrder(Q5) ; / n4 X* c7 r/ I, S5 a! n$ z, o, O1 AM; . j" v/ f2 c0 Y4 q/ i) h: S' ]% ]NumberField(M); ; }5 R8 \% X7 E0 C% V3 `7 u/ l+ nS1:=sub< M | 1 >;S2:=sub< M | 2 >;S3:=sub< M | 3 >;S4:=sub< M | 4 >;S5:=sub< M | 5 >;S25:=sub< M | 25 >;S625888888:=sub< M | 625888888 >;S625888888;2 x. H; C" J) N6 k9 K# |! L" r) P
IsQuadratic(Q5); 9 B& c& ?' ^ a% f. y% ~. [IsQuadratic(S1); 7 i% k) G3 u. b0 O" s' mIsQuadratic(S4);; w5 y2 X7 U! `) Y
IsQuadratic(S25); ! Q" T& Z4 l* y% |5 pIsQuadratic(S625888888);3 N$ S% `" I: k& i/ T
Factorization(w^2+3); , G+ ]1 g) A) [: z7 ?5 }Discriminant(Q5) ;. o) d6 V, x" }5 @" [7 g! m( N
FundamentalUnit(Q5) ; 1 g( q/ o- H) e' {FundamentalUnit(M);0 B" H$ ^' R G2 I1 i8 a
Conductor(Q5) ; 6 i( ]1 V2 V. H w+ e7 {3 {! J: Y; d' a0 B& g* u& a8 \# P
Name(M, -3); ( e7 m3 t. ]' o& c6 lConductor(M); 4 V" \7 n5 r. B/ z& Y- tClassGroup(Q5) ; % Q6 {( x% c$ N) e4 hClassGroup(M);4 h$ ]3 R7 [9 c, [6 e4 f1 S
ClassNumber(Q5) ; 9 Z* ?4 F' ?* e) PClassNumber(M) ; : ]4 h3 n4 p! _3 TPicardGroup(M) ;( q8 {% R! P' [
PicardNumber(M) ;) L$ } b2 S& Q7 A! U9 E
0 h% [, o/ l/ @+ `5 u
QuadraticClassGroupTwoPart(Q5);) [' m4 N( z: ]. ]5 B. f
QuadraticClassGroupTwoPart(M); 2 f/ Z+ `6 d( @4 P% m; \* aNormEquation(Q5, -3) ;6 }* b! i2 ?2 y0 f( ~
NormEquation(M, -3) ; - Y6 ]) R& z+ b; |2 V5 D- @. P( b" p) `2 H1 L
Quadratic Field with defining polynomial $.1^2 + 3 over the Rational Field , I: _/ t) t3 O: p4 yUnivariate Polynomial Ring in w over Q58 e2 z& a; {2 `* U0 ~& F
Equation Order of conductor 2 in Q5% l0 }3 X; W8 [" z4 B" A
Maximal Order of Q5: r& s( j# o: ]/ {
Quadratic Field with defining polynomial $.1^2 + 3 over the Rational Field0 P. {0 @3 e9 X# {
Order of conductor 625888888 in Q5 m6 P% u* p; p: n1 s* f0 b; jtrue Quadratic Field with defining polynomial $.1^2 + 3 over the Rational Field/ ?" _( J6 Q! Q! N
true Maximal Order of Q50 z3 k5 Q( b" u- g
true Order of conductor 16 in Q5 7 J9 H' D5 i- ^( l P3 @$ rtrue Order of conductor 625 in Q5 A [- P6 d% v6 Q
true Order of conductor 391736900121876544 in Q5 + u: F0 ]4 p) W- P9 R" r[, t1 K S$ `; m0 I4 y H7 f: {
<w - Q5.1, 1>,) ]! b9 T8 y4 R; N; f
<w + Q5.1, 1> . K `$ z8 {5 D5 \ ]% V+ p* O] ( N/ w( ]( ?5 Z-32 @4 v ^' u9 H8 J
3 [( \. [7 _7 f; m/ V
>> FundamentalUnit(Q5) ; 6 [1 R# F! C. I. o, S ^ 7 x' f( R* d5 k; ^) WRuntime error in 'FundamentalUnit': Field must have positive discriminant + `0 c( ~/ B- J& W9 _9 z0 Q0 Y5 {- I$ B" W' H
/ n2 Y8 _$ i6 i6 Y! j8 @7 w$ u+ L>> FundamentalUnit(M); 3 }- i1 {- d# {- M ^1 b# q$ E1 b6 o% z$ @9 }
Runtime error in 'FundamentalUnit': Field must have positive discriminant + [1 ]0 U; A. L) m9 w E0 A 5 F/ z, I9 z! i* f$ a4 w2 o3 " e- b, K% J- X$ n3 V) ?3 k; r. _9 `8 Y. I9 y
>> Name(M, -3); * G. ~; g! Y% K/ P* B; i8 r ^ . C; N6 U; L' y) N/ |0 J- s5 pRuntime error in 'Name': Argument 2 (-3) should be in the range [1 .. 1]1 w" \) m2 b8 [# _% _. e; j
+ J7 {/ @9 R% k& |5 K; I3 q
1 ' ~. ]6 n! e. Q1 i, K7 Q( YAbelian Group of order 1" L1 c! Q! W5 t4 B5 B4 q# K* @2 P
Mapping from: Abelian Group of order 1 to Set of ideals of M & O1 T3 g1 g4 \0 GAbelian Group of order 1 & k( Y4 I5 V. x# l: H+ h3 q- c x' YMapping from: Abelian Group of order 1 to Set of ideals of M3 s0 b0 j' M- l/ n
1 8 Q* z- B2 b- i- w# \* p. E1 * B: [! Y5 Y! V) i! U* N: UAbelian Group of order 1 u: s& v6 ~' Z! } L$ c' jMapping from: Abelian Group of order 1 to Set of ideals of M given by a rule [no% x2 L% Z$ A% Q# Q& o, Z2 J
inverse] , v# ]: u9 d0 Z. N+ M" L18 o- m. }1 z; n$ A3 o1 d: Z
Abelian Group of order 1 $ k3 q& V0 ^1 u+ i u$ Y( N3 y) cMapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant 1 _; M6 i5 E' P-3 given by a rule [no inverse]! F$ d2 x7 `+ q4 q
Abelian Group of order 1 4 v2 ]' C) e5 ~8 |4 MMapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant - \, b, U& Q" ^: f-3 given by a rule [no inverse] Q% G P4 }$ a8 _& \
false4 I4 R9 f" D/ U: d4 `* C' D. L% C
false