QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 2930|回复: 9
打印 上一主题 下一主题

虚二次域例两(-5/50)

[复制链接]
字体大小: 正常 放大
lilianjie        

43

主题

4

听众

204

积分

升级  52%

  • TA的每日心情
    开心
    2012-1-13 11:05
  • 签到天数: 15 天

    [LV.4]偶尔看看III

    跳转到指定楼层
    1#
    发表于 2012-1-4 17:41 |只看该作者 |倒序浏览
    |招呼Ta 关注Ta
    本帖最后由 lilianjie 于 2012-1-4 17:54 编辑
    4 t6 i9 }1 ^: X( D0 ?, N
    " T3 a& X5 s% [: XQ5:=QuadraticField(-5) ;
    9 R2 |4 ]- e. k* |2 `Q5;2 q  c- @  F7 }" ?% @% y2 n  @

    , J5 P8 Y5 Z$ D) t3 }" i& yQ<w> :=PolynomialRing(Q5);Q;: I- e6 ?' u& T+ M  `5 f5 ]
    EquationOrder(Q5);% s( `3 w1 r8 d
    M:=MaximalOrder(Q5) ;9 D" |; E# i7 v1 q, f9 ?
    M;& l( B2 D! r( h+ S0 G/ l
    NumberField(M);5 n- A& H# l9 E6 ~( a
    S1:=sub< M | 1 >;S2:=sub< M | 2 >;S3:=sub< M | 3 >;S4:=sub< M | 4 >;S5:=sub< M | 5 >;S25:=sub< M | 25 >;S625888888:=sub< M | 625888888 >;S625888888;, K5 Z! B# U7 s' R. u+ z
    IsQuadratic(Q5);
    4 ^: F1 O5 _; j+ m. D  i* yIsQuadratic(S1);! D* y+ @! i  s9 c7 _
    IsQuadratic(S4);/ s  {( \4 T) F1 o9 H3 |; }
    IsQuadratic(S25);$ c3 h4 H6 J. P8 I6 R
    IsQuadratic(S625888888);2 [, y( l3 g- G* H* Y* u1 t; r
    Factorization(w^2+5);  / |! f1 r5 {4 q
    Discriminant(Q5) ;
    % H1 ]5 H/ D( M5 CFundamentalUnit(Q5) ;
    2 R$ }5 J" x' l* F2 Z5 p) e0 o! Y8 X5 A! @FundamentalUnit(M);
    / }) Y4 W. J# ^" G/ QConductor(Q5) ;0 W; Z% p. h- l$ R" H8 a

    $ [# E, ~$ U9 h6 a# f5 gName(M, -5);
    5 R/ G3 t& ?& r( z; f* [4 A8 n: kConductor(M);: G1 k8 }6 q9 ^* Z3 `7 E
    ClassGroup(Q5) ; 0 X6 c1 b; `' T0 e4 s# k
    ClassGroup(M);
    9 @% H) ~  F$ X/ t! h) p7 dClassNumber(Q5) ;
    + G- ]8 W8 Z1 x0 W. r) WClassNumber(M) ;
    ' P# U: f# f! g5 O& @6 y" B0 K- G  uPicardGroup(M) ;
    ! Q" j  p5 H. b4 v: wPicardNumber(M) ;
    & ?, c, M, p0 f; M& W! [5 p. d5 J4 b, P) V- W- {( w, a
    QuadraticClassGroupTwoPart(Q5);/ G6 x( k0 I: T1 Z% O+ e/ B) _$ S0 v
    QuadraticClassGroupTwoPart(M);
    5 A. i1 u7 A/ h. P0 `8 XNormEquation(Q5, -5) ;
    + O4 f8 J* j' m; p8 N, oNormEquation(M, -5) ;' B6 ]- f. N7 G( p
    Quadratic Field with defining polynomial $.1^2 + 5 over the Rational Field9 o, g2 j; e5 i% g
    Univariate Polynomial Ring in w over Q5+ }& W# g' u) K* `0 Y$ D4 _
    Equation Order of conductor 1 in Q5
    2 {' A) f+ w) u% GMaximal Equation Order of Q5
    , x  K4 x' q1 H9 x8 g- i) t% VQuadratic Field with defining polynomial $.1^2 + 5 over the Rational Field  l  s! _" t9 X# j
    Order of conductor 625888888 in Q5
    * n3 K* `& v. [: @& B+ Z& |  t1 b, itrue Quadratic Field with defining polynomial $.1^2 + 5 over the Rational Field
    ; j' @* j5 D- J" w+ `true Maximal Equation Order of Q56 b  ~4 {/ d7 y$ P( [
    true Order of conductor 1 in Q5
    + N7 }( J6 i6 K" ^1 p; x' \/ ^true Order of conductor 1 in Q58 ~& G8 y, _5 [- ~8 K+ A
    true Order of conductor 1 in Q5. A4 l) h- q2 g4 f6 R
    [
    : \; q# |% |; l6 f" Y$ B    <w - Q5.1, 1>,+ |7 V/ D! o; h" J: j
        <w + Q5.1, 1>
    & e0 R& q  |: o/ w' H0 F- Q8 N: P0 L]
    4 r& L! Y* p9 a( f-20+ _3 o8 F( z5 e" |
    * h$ k& ]3 T! n8 s' f( T
    >> FundamentalUnit(Q5) ;8 C# ^; r8 Z8 u% c
                      ^* \- {8 c* w( q
    Runtime error in 'FundamentalUnit': Field must have positive discriminant
    1 |1 V) z! f  q: }! P. \# A. J+ {2 s. G: p

    8 f6 j) q3 v7 Y4 N>> FundamentalUnit(M);
    ! ~$ X) `2 n+ t5 z5 l$ ^8 N                  ^, x, a7 D) F$ I! {  Y6 I- R: V( q
    Runtime error in 'FundamentalUnit': Field must have positive discriminant, y4 u. j/ I: t. D8 ~8 k& R
    ; ^! b$ [& b( \5 Z/ ^- l
    20  v: Q' _' [, K! G
    $ S  i3 b% M- h! x; [7 D
    >> Name(M, -5);* g  f( `/ Y# m- {  \. k+ c) H
           ^
    $ T1 h* U8 a/ b4 w1 j/ YRuntime error in 'Name': Argument 2 (-5) should be in the range [1 .. 1]/ r! Y7 L, e: _
    % Z3 g6 g9 |+ U9 E1 T
    1: G2 l- l3 I. V
    Abelian Group isomorphic to Z/24 {& r3 |: @) t
    Defined on 1 generator
    5 O! B' z- w9 v7 uRelations:
    . d) E) o- {3 E0 B" Z    2*$.1 = 0) n+ T: w4 Z  T/ T8 m
    Mapping from: Abelian Group isomorphic to Z/20 ?6 o5 N* _, ?/ {. z
    Defined on 1 generator
    / [0 @+ A) {  k4 E& B$ _+ D7 ~8 m  xRelations:
    ; H5 A3 z2 n4 S/ v/ L1 t    2*$.1 = 0 to Set of ideals of M
    $ q" c7 J( |5 ~7 h' q) wAbelian Group isomorphic to Z/2' t, W, o1 N/ Q9 W: \
    Defined on 1 generator
    9 U$ `$ z- H% L% {9 cRelations:
    : p9 T# s; v4 R) {* R! Y    2*$.1 = 0( l/ W% c" M  ?# T) t/ C: C
    Mapping from: Abelian Group isomorphic to Z/2
    ! Q5 x1 j. W4 F* V$ i! o6 |Defined on 1 generator) C$ b. z; T; r
    Relations:! Q9 {7 Y9 P1 {* {
        2*$.1 = 0 to Set of ideals of M
    6 ~  }3 S# g- z2
    , `  ?& ~& F7 L& P, F" ?" ~2
    & _' C% f5 Z4 X3 e  C% z1 \1 [Abelian Group isomorphic to Z/2
    + i/ G$ P+ k; w8 q: m9 P/ jDefined on 1 generator
    # e5 {: f" d; R( U. L& R" TRelations:3 K" P$ l! [3 r8 N1 U3 `, {
        2*$.1 = 0
    * L1 ?8 z$ G" r! R4 F& XMapping from: Abelian Group isomorphic to Z/2
      X6 v: M" y# d& |/ kDefined on 1 generator
    ) ~- m) u' l* Y4 uRelations:& h' D3 `+ y! T. i- b" Z. T" V
        2*$.1 = 0 to Set of ideals of M given by a rule [no inverse]
    1 @1 n5 O$ a# ]" f' J0 ?2( W6 a# }; z0 x' l! i8 ?/ H  A
    Abelian Group isomorphic to Z/24 r& \4 K$ B% w" P: J( `9 }, U
    Defined on 1 generator
    1 Z; \1 C  w3 E3 y. X3 Q1 jRelations:, n, `5 @/ @  M7 `) [) f
        2*$.1 = 0
    % g  x8 E/ K1 b/ Y( g- h+ m2 aMapping from: Abelian Group isomorphic to Z/2
    + t: Y. I2 @* i4 J9 u8 `8 NDefined on 1 generator
    " {9 {, J5 o' P, {; H) RRelations:6 m: `. L* p% E7 _; M0 M- ~
        2*$.1 = 0 to Binary quadratic forms of discriminant -20 given by a rule [no
    6 H% Q2 r" h1 K5 D7 @( @7 A" K5 I' {inverse]8 n$ q% o, ]" ~3 M6 C' k) I& t
    Abelian Group isomorphic to Z/2
    & Y& d3 p, l& b9 S" p7 ZDefined on 1 generator
    . e  M; X7 ?" n; k: b) GRelations:9 |' y( p/ T7 w7 y- m
        2*$.1 = 0* E) g8 X0 r6 ]8 a; I
    Mapping from: Abelian Group isomorphic to Z/2
    4 [/ @! v2 U. {* h9 Y9 SDefined on 1 generator
    " Y1 c0 t8 P7 y7 N$ h( Z) ~Relations:  b4 b' v' x) T8 j' M% y5 K3 b
        2*$.1 = 0 to Binary quadratic forms of discriminant -20 given by a rule [no 5 @2 J9 f( ~( S8 D: o1 a
    inverse]
    $ I' w9 V. o, E: jfalse
    2 Y5 q! g, g6 j! Gfalse; N( S1 W% t  l' T, [& D
    ==============0 g8 w' U; @# h/ o- r7 e4 F8 l

    % E, r/ `" P( f' ]0 N8 ], D0 \7 b0 X7 U2 s
    Q5:=QuadraticField(-50) ;
    9 i( s- [" ]. X8 ]0 `7 W* tQ5;
    & x7 q  c# \' {, O
    : u5 w* a- D, Y5 {$ |/ d  ]6 [Q<w> :=PolynomialRing(Q5);Q;
    ! r  n- D  X& u# @. @8 u. fEquationOrder(Q5);
    6 M2 ]( {) U# L  h9 JM:=MaximalOrder(Q5) ;
    1 p4 j" j$ O) ~; H& p$ k+ NM;
    0 I9 S" _1 I" t( O1 fNumberField(M);
    5 R& J5 J( T+ W( [& AS1:=sub< M | 1 >;S2:=sub< M | 2 >;S3:=sub< M | 3 >;S4:=sub< M | 4 >;S5:=sub< M | 5 >;S25:=sub< M | 25 >;S625888888:=sub< M | 625888888 >;S625888888;) z1 J# _4 l. g- ^% n+ G
    IsQuadratic(Q5);
    4 K1 n, c0 r+ F8 F: z2 C; y; ]IsQuadratic(S1);/ ^' B/ z+ Z% v( Y( R3 P
    IsQuadratic(S4);
    , b  d" m# T- bIsQuadratic(S25);5 F/ k5 H( \7 C
    IsQuadratic(S625888888);* p  W- [9 p' @
    Factorization(w^2+50);  + j6 y% H# l; P! p! d6 f
    Discriminant(Q5) ;
    ! `/ D* N& a+ q1 `' ?FundamentalUnit(Q5) ;
    7 U' ?. \. K9 X* v4 g  U) f1 wFundamentalUnit(M);
    7 v& o, O4 J( X7 H+ JConductor(Q5) ;
    6 S# r8 A1 W% y* y1 H7 n: L) f- d% o3 `7 m7 y. K* P1 {) s4 q4 S
    Name(M, -50);* L2 }: T! X8 s: [7 r4 k; `
    Conductor(M);
    : U9 J- i) z  F+ z8 G/ OClassGroup(Q5) ;
      @& @# [3 X* O1 x% h: }ClassGroup(M);& n. J/ a3 e% Z/ x" z. I5 A
    ClassNumber(Q5) ;
    + Q# t1 G- b* m0 Z. m& h7 D7 \ClassNumber(M) ;, I, M0 r2 q, y$ G7 e/ {. N1 s+ L
    PicardGroup(M) ;1 \; d% h" w6 e. X( E  \* X4 u# p: O
    PicardNumber(M) ;5 v) P# R, S: m
      q: A2 ?8 Q* `+ T: n; s$ l
    QuadraticClassGroupTwoPart(Q5);% d: T5 _0 z4 M/ _# R! C
    QuadraticClassGroupTwoPart(M);
    4 m; V* ~" f! b# E0 I, HNormEquation(Q5, -50) ;0 P1 c$ }' D* c0 }+ i1 h  p6 b" ^
    NormEquation(M, -50) ;
    + c1 L1 M! Y* M/ \8 `/ y& w
    1 S2 J9 T' j1 t+ \Quadratic Field with defining polynomial $.1^2 + 2 over the Rational Field
    ' j! t- w7 I( M/ {5 D$ yUnivariate Polynomial Ring in w over Q5/ `! W5 }0 [/ ]
    Equation Order of conductor 1 in Q5
    ' Y  r3 D- c8 a" N+ x: IMaximal Equation Order of Q5- U% p/ P& p- U# S6 g$ \, C6 l
    Quadratic Field with defining polynomial $.1^2 + 2 over the Rational Field+ i6 Y0 f' @* a: R- U3 i, [. c
    Order of conductor 625888888 in Q5
    1 C% P  @! C+ \5 jtrue Quadratic Field with defining polynomial $.1^2 + 2 over the Rational Field9 m- |0 t' B2 }/ K- C
    true Maximal Equation Order of Q5
    0 b0 g6 e8 F# K1 A  Q( X, Ztrue Order of conductor 1 in Q5# F; v  t+ V3 a% E5 D/ [
    true Order of conductor 1 in Q5: Q+ i1 J2 i! l  e
    true Order of conductor 1 in Q5
    0 [9 F& ?' K& q* E; p! m3 t[# D, f  V; D7 b* H
        <w - 5*Q5.1, 1>,) {1 j& H3 D3 F# T# o4 B; j
        <w + 5*Q5.1, 1>/ i) y. F( Q7 q6 H% ?; Z8 W
    ]: T9 C& W+ q+ u  [7 u
    -8
    ! w9 c! @' Q+ z
    4 {0 c; g6 f  q+ {% Y  L& o>> FundamentalUnit(Q5) ;2 r, M+ ?# o* k( [9 P4 M! P2 v
                      ^; T8 @' b- ]' p, e' C; O
    Runtime error in 'FundamentalUnit': Field must have positive discriminant
    3 @( s' i8 B% g3 B% |4 n
    5 z/ z1 f; O/ f  Q! }) \
    9 U. _, R' }9 |( s>> FundamentalUnit(M);
    6 C0 z+ f- y: e                  ^
    4 c+ ]" S8 E* ~: I# v/ p* q5 ZRuntime error in 'FundamentalUnit': Field must have positive discriminant
    7 v* T0 J" E' @3 B0 x2 f0 p0 y! U; e- ~" P
    8
    $ Y6 w' z4 j: t4 y: ?3 y! Z
    2 ?  Q  q0 b) U+ I+ b3 L1 N4 f3 ~$ I>> Name(M, -50);" C  G  D. {% b+ C+ l4 P: K
           ^
    4 I5 ]3 \4 A% e8 d! g7 M9 DRuntime error in 'Name': Argument 2 (-50) should be in the range [1 .. 1]" r5 |) T0 ]5 G+ t

      Z) u$ c. _% _; h' C4 t* u: C- g6 o/ g1
    & }1 `4 p( X' R. U  W$ ]Abelian Group of order 17 T: E0 v+ i( @; f; I- |3 l
    Mapping from: Abelian Group of order 1 to Set of ideals of M
    & t) s. m1 e+ s( |; i, v) K* v3 v  @Abelian Group of order 18 G/ L( u5 E: A& g( s4 N
    Mapping from: Abelian Group of order 1 to Set of ideals of M# G3 u4 {% [4 S& N4 @. v
    1$ F* g* B' x0 u2 `
    14 G4 f$ p! A' W. m
    Abelian Group of order 11 d- q/ d  E' T
    Mapping from: Abelian Group of order 1 to Set of ideals of M given by a rule [no
    + k) D( p( x; g- A4 V9 G$ \inverse]
    $ f, r1 }" Z' _5 _1
    , L) q, U5 Q. mAbelian Group of order 1
    5 F6 O4 X+ X& JMapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant
    7 `, R; T1 X$ ]/ v+ \! M$ |-8 given by a rule [no inverse]+ r& n) R, E8 T' g+ p; J, |
    Abelian Group of order 1
      a& X$ u+ Z6 p; }8 N7 n0 ]9 ZMapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant
    * q% r2 |) ?7 S* _& D6 e-8 given by a rule [no inverse]
    * C- e- v# \) \0 yfalse' M, V6 m- t! c, y
    false: C) x/ f3 `! M0 W2 p& ~7 [
    zan
    转播转播0 分享淘帖0 分享分享0 收藏收藏0 支持支持0 反对反对0 微信微信
    lilianjie        

    43

    主题

    4

    听众

    204

    积分

    升级  52%

  • TA的每日心情
    开心
    2012-1-13 11:05
  • 签到天数: 15 天

    [LV.4]偶尔看看III

    看看-1.-3的两种:
    8 L; m4 m6 ]3 t( F* v0 J. |% G; m
    Q5:=QuadraticField(-1) ;% @  R( \2 \7 B& ]- k
    Q5;
    ( l+ V2 w* h' Z- o9 a4 R3 A/ P
    $ ^3 K5 S5 `  }9 WQ<w> :=PolynomialRing(Q5);Q;% W# z3 O' i5 d' Y
    EquationOrder(Q5);
    & J3 H! H: E$ F( `; xM:=MaximalOrder(Q5) ;/ }+ `0 X/ O$ K6 T/ V6 R- F2 U
    M;
    0 p! V# \: V$ ]& P! lNumberField(M);
    ) f: M% A# A9 |8 T) \5 j# aS1:=sub< M | 1 >;S2:=sub< M | 2 >;S3:=sub< M | 3 >;S4:=sub< M | 4 >;S5:=sub< M | 5 >;S25:=sub< M | 25 >;S625888888:=sub< M | 625888888 >;S625888888;
    ) Q! G+ w: N) w% s/ k) O4 h  _IsQuadratic(Q5);: f$ \% l' H; b1 a7 R) O
    IsQuadratic(S1);2 A) r; Y& X, m. A$ n, D+ c1 F
    IsQuadratic(S4);
    * g8 w' a, G9 {IsQuadratic(S25);) }( u" O& @, i' e6 W$ ^  r
    IsQuadratic(S625888888);! v) w' u7 U1 A% P
    Factorization(w^2+1);  7 z, D" j" E1 c! T
    Discriminant(Q5) ;0 n6 L/ y8 t2 @% ~% ~1 m* j. w
    FundamentalUnit(Q5) ;
    4 B' D8 D8 V# D& n5 t' `FundamentalUnit(M);+ Y, T: |# B6 P9 ?7 U
    Conductor(Q5) ;
    8 H8 }/ r  {, G3 G1 u& a1 a
    9 R0 k' h# l/ P5 T) ^+ b: wName(M, -1);+ c6 Q; F; w3 W) b# \  ?* O9 X
    Conductor(M);
    , r2 Z; ], _/ Z9 I% d5 `ClassGroup(Q5) ;
    6 F+ ?5 H6 u5 l: h! |ClassGroup(M);
    7 |# `, c' x, T$ J+ l* lClassNumber(Q5) ;% @9 e: E% v* B8 b7 z2 \
    ClassNumber(M) ;
    . E2 e5 v; [* w, P; R! ^PicardGroup(M) ;" S( U9 ]+ P# ]5 B0 s( N  m
    PicardNumber(M) ;# {' g6 }, M! T& h1 G

    / B3 f+ X! B- kQuadraticClassGroupTwoPart(Q5);' u3 y6 j0 f5 X& Y+ {
    QuadraticClassGroupTwoPart(M);0 a% @1 }# ~, H" ^5 R" c
    NormEquation(Q5, -1) ;
    4 h1 u0 R4 y3 d6 ?NormEquation(M, -1) ;# V; [; j7 D2 E  o: K2 F0 l5 a

    4 P% q) k7 D  W, l: NQuadratic Field with defining polynomial $.1^2 + 1 over the Rational Field" x- d! d, ]& |' W1 [" E
    Univariate Polynomial Ring in w over Q54 H* S% I  q5 w) ]+ b& T
    Equation Order of conductor 1 in Q5, g/ b- [% Q; _; ^+ L/ s( C
    Maximal Equation Order of Q5  H  X$ Q. d6 h. _# q9 P! u
    Quadratic Field with defining polynomial $.1^2 + 1 over the Rational Field2 T8 O9 s1 n1 G( n- B  Y7 ]7 O, G2 H
    Order of conductor 625888888 in Q5
    6 D, F% q; _5 n: f, w# otrue Quadratic Field with defining polynomial $.1^2 + 1 over the Rational Field" B, M# X6 D5 ^$ l, q4 u" ?
    true Maximal Equation Order of Q55 o; g) R) ]( f8 v" S
    true Order of conductor 1 in Q5
    * t7 S0 G9 j6 ftrue Order of conductor 1 in Q5  z; ~* T' ]% h' K2 j6 C
    true Order of conductor 1 in Q57 K, {. E, U: [8 E. {
    [2 }/ U* n; ^- ?& [8 ?: R5 n
        <w - Q5.1, 1>,  f4 t- Y2 P0 E- D7 ^# }
        <w + Q5.1, 1>" C. t, Q8 I3 B# K$ p
    ]
    8 }( e9 {- [- Z: Z-4" \8 ]+ Q5 t3 A7 f; ^& L

    7 Y* m! }+ Q$ D  {% e. P- T>> FundamentalUnit(Q5) ;0 T, G/ H2 R$ q: R. ^
                      ^$ A* }- Q. q0 Y* j
    Runtime error in 'FundamentalUnit': Field must have positive discriminant
    ( D4 y" `" v3 W1 i: S
    0 l# f/ {4 {! g# f: }2 _3 {
    # f" e, t, F4 X2 X5 |! J>> FundamentalUnit(M);6 E  T" c3 Y% ^- O
                      ^$ s0 X" A4 S- V
    Runtime error in 'FundamentalUnit': Field must have positive discriminant" L/ A  r, F: R! l* Z: k1 y
    % G7 c+ g* {. ^8 c2 W1 @: u
    4& C! h; _3 I5 X3 \
    7 w' A, \! k% Y& T3 ]
    >> Name(M, -1);  b6 X" N5 G  m# w/ W
           ^
    ! [2 {( }+ Q0 z/ GRuntime error in 'Name': Argument 2 (-1) should be in the range [1 .. 1]
    7 m0 ~2 Q0 T$ y3 ?$ i( V
    $ s  Y6 E1 t; D- g; ~% |1
    , n- w: p3 p2 }* QAbelian Group of order 16 s2 n! K6 s8 a7 M
    Mapping from: Abelian Group of order 1 to Set of ideals of M
    + S  T6 |: ]' A5 Q  T5 h# v5 sAbelian Group of order 1, B2 l" f# a* i
    Mapping from: Abelian Group of order 1 to Set of ideals of M
    ; Q# N( T! [$ S+ i1
    0 y* C1 l# F2 v; y1, ]2 q$ g/ Z. b
    Abelian Group of order 1
    - x" j* S9 h4 L, t$ k0 MMapping from: Abelian Group of order 1 to Set of ideals of M given by a rule [no
    # V2 A) X0 F- ]0 G0 Iinverse]
    7 P7 Y$ h4 i0 W! N15 ]! F* C5 M7 z" S7 I
    Abelian Group of order 1
    ) {) d3 D3 x: ?( T& pMapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant4 c' S( ]+ l/ ^7 ?
    -4 given by a rule [no inverse]
    ' L$ t1 x+ A+ }Abelian Group of order 1( X  B* W& n  @0 Z
    Mapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant
    6 k) Q) |9 T% Z8 c2 f-4 given by a rule [no inverse]
    1 O. P* o9 `1 b; e' S! `false
    5 A6 V4 N, Z) Bfalse" }5 ?) M/ a3 }' v
    ===============: w5 ]. k, G+ ^6 C
    6 \: Q9 M, Y, Z4 X
    Q5:=QuadraticField(-3) ;
    : |, {/ B8 [$ J* o% D, x2 x! qQ5;: b$ d% r: x. |% f$ A

    ! b7 u; r% ]0 `$ x5 l7 F7 rQ<w> :=PolynomialRing(Q5);Q;
    3 v; V( G0 n( H: t& EEquationOrder(Q5);' a* M) F5 K2 @" a$ @: q2 r
    M:=MaximalOrder(Q5) ;
    / n4 X* c7 r/ I, S5 a! n$ z, o, O1 AM;
    . j" v/ f2 c0 Y4 q/ i) h: S' ]% ]NumberField(M);
    ; }5 R8 \% X7 E0 C% V3 `7 u/ l+ nS1:=sub< M | 1 >;S2:=sub< M | 2 >;S3:=sub< M | 3 >;S4:=sub< M | 4 >;S5:=sub< M | 5 >;S25:=sub< M | 25 >;S625888888:=sub< M | 625888888 >;S625888888;2 x. H; C" J) N6 k9 K# |! L" r) P
    IsQuadratic(Q5);
    9 B& c& ?' ^  a% f. y% ~. [IsQuadratic(S1);
    7 i% k) G3 u. b0 O" s' mIsQuadratic(S4);; w5 y2 X7 U! `) Y
    IsQuadratic(S25);
    ! Q" T& Z4 l* y% |5 pIsQuadratic(S625888888);3 N$ S% `" I: k& i/ T
    Factorization(w^2+3);  
    , G+ ]1 g) A) [: z7 ?5 }Discriminant(Q5) ;. o) d6 V, x" }5 @" [7 g! m( N
    FundamentalUnit(Q5) ;
    1 g( q/ o- H) e' {FundamentalUnit(M);0 B" H$ ^' R  G2 I1 i8 a
    Conductor(Q5) ;
    6 i( ]1 V2 V. H  w+ e7 {3 {! J: Y; d' a0 B& g* u& a8 \# P
    Name(M, -3);
    ( e7 m3 t. ]' o& c6 lConductor(M);
    4 V" \7 n5 r. B/ z& Y- tClassGroup(Q5) ;
    % Q6 {( x% c$ N) e4 hClassGroup(M);4 h$ ]3 R7 [9 c, [6 e4 f1 S
    ClassNumber(Q5) ;
    9 Z* ?4 F' ?* e) PClassNumber(M) ;
    : ]4 h3 n4 p! _3 TPicardGroup(M) ;( q8 {% R! P' [
    PicardNumber(M) ;) L$ }  b2 S& Q7 A! U9 E
    0 h% [, o/ l/ @+ `5 u
    QuadraticClassGroupTwoPart(Q5);) [' m4 N( z: ]. ]5 B. f
    QuadraticClassGroupTwoPart(M);
    2 f/ Z+ `6 d( @4 P% m; \* aNormEquation(Q5, -3) ;6 }* b! i2 ?2 y0 f( ~
    NormEquation(M, -3) ;
    - Y6 ]) R& z+ b; |2 V5 D- @. P( b" p) `2 H1 L
    Quadratic Field with defining polynomial $.1^2 + 3 over the Rational Field
    , I: _/ t) t3 O: p4 yUnivariate Polynomial Ring in w over Q58 e2 z& a; {2 `* U0 ~& F
    Equation Order of conductor 2 in Q5% l0 }3 X; W8 [" z4 B" A
    Maximal Order of Q5: r& s( j# o: ]/ {
    Quadratic Field with defining polynomial $.1^2 + 3 over the Rational Field0 P. {0 @3 e9 X# {
    Order of conductor 625888888 in Q5
      m6 P% u* p; p: n1 s* f0 b; jtrue Quadratic Field with defining polynomial $.1^2 + 3 over the Rational Field/ ?" _( J6 Q! Q! N
    true Maximal Order of Q50 z3 k5 Q( b" u- g
    true Order of conductor 16 in Q5
    7 J9 H' D5 i- ^( l  P3 @$ rtrue Order of conductor 625 in Q5  A  [- P6 d% v6 Q
    true Order of conductor 391736900121876544 in Q5
    + u: F0 ]4 p) W- P9 R" r[, t1 K  S$ `; m0 I4 y  H7 f: {
        <w - Q5.1, 1>,) ]! b9 T8 y4 R; N; f
        <w + Q5.1, 1>
    . K  `$ z8 {5 D5 \  ]% V+ p* O]
    ( N/ w( ]( ?5 Z-32 @4 v  ^' u9 H8 J
    3 [( \. [7 _7 f; m/ V
    >> FundamentalUnit(Q5) ;
    6 [1 R# F! C. I. o, S                  ^
    7 x' f( R* d5 k; ^) WRuntime error in 'FundamentalUnit': Field must have positive discriminant
    + `0 c( ~/ B- J& W9 _9 z0 Q0 Y5 {- I$ B" W' H

    / n2 Y8 _$ i6 i6 Y! j8 @7 w$ u+ L>> FundamentalUnit(M);
    3 }- i1 {- d# {- M                  ^1 b# q$ E1 b6 o% z$ @9 }
    Runtime error in 'FundamentalUnit': Field must have positive discriminant
    + [1 ]0 U; A. L) m9 w  E0 A
    5 F/ z, I9 z! i* f$ a4 w2 o3
    " e- b, K% J- X$ n3 V) ?3 k; r. _9 `8 Y. I9 y
    >> Name(M, -3);
    * G. ~; g! Y% K/ P* B; i8 r       ^
    . C; N6 U; L' y) N/ |0 J- s5 pRuntime error in 'Name': Argument 2 (-3) should be in the range [1 .. 1]1 w" \) m2 b8 [# _% _. e; j
    + J7 {/ @9 R% k& |5 K; I3 q
    1
    ' ~. ]6 n! e. Q1 i, K7 Q( YAbelian Group of order 1" L1 c! Q! W5 t4 B5 B4 q# K* @2 P
    Mapping from: Abelian Group of order 1 to Set of ideals of M
    & O1 T3 g1 g4 \0 GAbelian Group of order 1
    & k( Y4 I5 V. x# l: H+ h3 q- c  x' YMapping from: Abelian Group of order 1 to Set of ideals of M3 s0 b0 j' M- l/ n
    1
    8 Q* z- B2 b- i- w# \* p. E1
    * B: [! Y5 Y! V) i! U* N: UAbelian Group of order 1
      u: s& v6 ~' Z! }  L$ c' jMapping from: Abelian Group of order 1 to Set of ideals of M given by a rule [no% x2 L% Z$ A% Q# Q& o, Z2 J
    inverse]
    , v# ]: u9 d0 Z. N+ M" L18 o- m. }1 z; n$ A3 o1 d: Z
    Abelian Group of order 1
    $ k3 q& V0 ^1 u+ i  u$ Y( N3 y) cMapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant
    1 _; M6 i5 E' P-3 given by a rule [no inverse]! F$ d2 x7 `+ q4 q
    Abelian Group of order 1
    4 v2 ]' C) e5 ~8 |4 MMapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant
    - \, b, U& Q" ^: f-3 given by a rule [no inverse]  Q% G  P4 }$ a8 _& \
    false4 I4 R9 f" D/ U: d4 `* C' D. L% C
    false
    回复

    使用道具 举报

    74

    主题

    6

    听众

    3295

    积分

    升级  43.17%

  • TA的每日心情
    无聊
    2015-9-4 00:52
  • 签到天数: 374 天

    [LV.9]以坛为家II

    社区QQ达人 邮箱绑定达人 发帖功臣 最具活力勋章

    群组数学建摸协会

    群组Matlab讨论组

    群组小草的客厅

    群组数学建模

    群组LINGO

    回复

    使用道具 举报

    lilianjie        

    43

    主题

    4

    听众

    204

    积分

    升级  52%

  • TA的每日心情
    开心
    2012-1-13 11:05
  • 签到天数: 15 天

    [LV.4]偶尔看看III

    本帖最后由 lilianjie 于 2012-1-5 15:20 编辑 - R. Q' A. I4 L- Q3 s/ N

    - O3 n4 `3 n; QDirichlet character; a% ^7 N; E( P
    Dirichlet class number formula
    % F  [) J! y7 K" ]
    . }9 i6 {" n$ S# G+ S5 p虚二次域复点1,实点为0,实二次域复点0,实点为2,实二次域只有两单位根
    " t* W; F8 c4 A6 Y) T3 A% @6 {4 s$ M) _: H5 N# A' I" J
    -1时,4个单位根1,-1, i, -i,w=4,            N=4,互素(1,3),    (Z/4Z)*------->C*      χ(1mod4)=1,χ(3mod4)=-1,h=4/(2*4)*Σ[1*1+(3*(-1)]=1
    4 q, i  S, _: J  |' ^
    / [3 p; V! I, E; i* G5 w! }  F$ Y; y-3时  6个单位根                             N=3  互素(1,2),    (Z/3Z)*------->C*         χ(1mod3)=1,χ(2mod3)=-1,
    1 ?7 l: _- {* s3 O( L) w. vh=-6/(2*3)*Σ[1*1+(2*(-1)]=1
    . q1 D1 E( E* r: Z- m' j% K* m; S  d
    -5时  2个单位根                              N=20   N=3  互素(1,3,7,9,11,13,17,19),    (Z/5Z)*------->C*         χ(1mod20)=1,χ(3mod20)=-1, χ(7mod20)=1, χ(9mod20)=1,χ(11mod20)=1,χ(13mod20)=1,χ(17mod20)=1,χ(19mod20)=1,: m3 ]+ v% C1 u; B$ O" ^

    ) R0 N0 _" V0 m2 p* u; n7 }) x2 \: X) {
    8 S! O8 n% m2 Q  H3 r9 D0 J; @
    h=2/(2*20)*Σ[1*1-3*1-7*1+9*1-11*1-13*1+17*1+19*1]=2& }+ L, D7 Y" I' g% H" o. m4 e8 O

    5 b. p/ ?& z1 s, y3 X8 s
    # d/ i/ X( q- d, N! r9 S+ ^; ]* @0 h0 r, ~2 i' |
    -50时  个单位根                          N=200" |' L! T% X( }# a" a# ^  B
    回复

    使用道具 举报

    15

    主题

    4

    听众

    113

    积分

    升级  6.5%

  • TA的每日心情
    开心
    2012-1-13 11:49
  • 签到天数: 9 天

    [LV.3]偶尔看看II

    Dirichlet character

    21.JPG (79.18 KB, 下载次数: 231)

    21.JPG

    11.JPG (74.76 KB, 下载次数: 237)

    11.JPG

    回复

    使用道具 举报

    15

    主题

    4

    听众

    113

    积分

    升级  6.5%

  • TA的每日心情
    开心
    2012-1-13 11:49
  • 签到天数: 9 天

    [LV.3]偶尔看看II

    回复

    使用道具 举报

    lilianjie        

    43

    主题

    4

    听众

    204

    积分

    升级  52%

  • TA的每日心情
    开心
    2012-1-13 11:05
  • 签到天数: 15 天

    [LV.4]偶尔看看III

    本帖最后由 lilianjie 于 2012-1-9 20:30 编辑
    3 J% D5 Q9 }; P. ?9 p6 w( Q' P: A6 N' N
    F := QuadraticField(NextPrime(5));
    9 e) [9 D& Y: u1 s) W
    $ o0 M/ i7 s  _$ ~KK := QuadraticField(7);KK;
    * m3 T) ]8 z6 n5 T7 E; aK:=MaximalOrder(KK);7 ~& c) \: ~8 k+ B$ W
    Conductor(KK);
    , P5 m& R: h5 w2 HClassGroup(KK) ;
    7 p* L+ G, r8 \QuadraticClassGroupTwoPart(KK) ;
    7 V1 U2 q6 G& ANormEquation(F, 7);# k$ J* D4 g! E
    A:=K!7;A;1 x3 _/ Z# a" I8 T, x: I- B5 A
    B:=K!14;B;, r( ~0 \% V' C/ g4 x  y, t  r5 H
    Discriminant(KK)
    % e/ w0 j2 d( k1 E# K% C$ W$ I5 ~, g* L9 U* x
    Quadratic Field with defining polynomial $.1^2 - 7 over the Rational Field
    ( j$ h& e6 H5 s5 W% }28. ]& G4 f5 }2 y' V9 N
    Abelian Group of order 19 C" o9 u2 ?$ y8 j. H
    Mapping from: Abelian Group of order 1 to Set of ideals of K* `, Z# D) S6 d4 W4 T+ I
    Abelian Group isomorphic to Z/2
    6 K; G! g3 H& x" w6 m4 vDefined on 1 generator
    " b3 f; h9 F! Z4 wRelations:- O! q* R" \* V
        2*$.1 = 0
    ) ?; y- x9 q1 ^7 s/ ^Mapping from: Abelian Group isomorphic to Z/2
    % ^  h! F7 V" U0 W3 K7 wDefined on 1 generator3 P) [: x9 E/ T. @, X, s
    Relations:
    ! I5 U& w! F9 r# V8 j% n9 k$ }% F    2*$.1 = 0 to Binary quadratic forms of discriminant 28 given by a rule [no
    & ?6 q& x; Y0 B$ g% w2 B& I: p3 Qinverse]
    8 U; P1 Q7 F: W9 v/ G* Afalse
    2 {( N% ]9 ~/ V0 B& M7
    + [* ~: t6 O- _0 F0 Y  i% K" @$ p14. j" L" X4 `: C5 N, @- `+ j
    28
    回复

    使用道具 举报

    lilianjie        

    43

    主题

    4

    听众

    204

    积分

    升级  52%

  • TA的每日心情
    开心
    2012-1-13 11:05
  • 签到天数: 15 天

    [LV.4]偶尔看看III

    本帖最后由 lilianjie 于 2012-1-10 11:23 编辑
    / B' K7 q- ~% \! m3 R
    7 X. G! j! ?7 j" ~- ~+ B0 I 11.JPG
    ; X/ ~- E" f+ b$ T4 ]# z+ X  I* X" I/ V/ z. n
    3212.JPG * b8 F/ k6 F! W3 `- m) N+ l8 S) Q. l% _
    ; [7 n" E( ^+ l/ A9 a
    123.JPG
    0 F/ V" N- i! o2 |2 g$ o( P; b
    . H" Q# ]' @. }0 d% y# y" Y% h分圆域:
    6 X! ]% w! {$ ZC:=CyclotomicField(5);C;
    - |* O: N! s; yCyclotomicPolynomial(5);
    " W* i; ^' Q& ?7 jC:=CyclotomicField(6);C;3 j& f6 S0 i+ T1 z8 C4 G
    CyclotomicPolynomial(6);9 O& T7 O+ G( z6 K( ~, u! N5 M
    CC:=CyclotomicField(7);CC;
    3 {  x6 X7 b$ t: L9 M$ L0 SCyclotomicPolynomial(7);
    2 e; B2 `7 S2 J5 P2 g, i% ZMinimalField(CC!7) ;5 l  U7 y/ u; ]7 J% @: B3 ~
    MinimalField(CC!8) ;7 \# g0 t( S' V$ ]* W" Y
    MinimalField(CC!9) ;' Z, J; d7 q. p2 c) v% o
    MinimalCyclotomicField(CC!7) ;  W& q0 P4 Z  D* i" t0 D1 S
    RootOfUnity(11);RootOfUnity(111);2 m* K/ U  R+ f- C3 f
    Minimise(CC!123);
    . V4 {. K$ Z2 n, M4 `( a1 T' M2 mConductor(CC) ;: R2 h) m, J, l
    CyclotomicOrder(CC) ;
    5 B5 q( {( w9 c) |0 x" s, G2 m6 _' \# F2 x, Y9 R& E: K' p
    CyclotomicAutomorphismGroup(CC) ;
    : l6 D1 E" B4 p! L" s, `4 _/ B0 h/ I% Y: ]* J& `
    Cyclotomic Field of order 5 and degree 42 e/ c% U* r: h6 d! ^
    $.1^4 + $.1^3 + $.1^2 + $.1 + 1
    1 c, g" P/ ]) c; uCyclotomic Field of order 6 and degree 2
    & s/ G5 B6 }9 ?7 O& A9 d$.1^2 - $.1 + 1
    ( t" x' S% E- J4 P. C9 @2 sCyclotomic Field of order 7 and degree 68 c5 A$ }; L9 F3 ?6 _3 p" E
    $.1^6 + $.1^5 + $.1^4 + $.1^3 + $.1^2 + $.1 + 1, Y& q: S2 X( Y2 r3 P
    Rational Field9 _1 C5 D6 ~  Z( g! y
    Rational Field
    5 T9 O; n+ |/ ~1 M6 f' NRational Field/ |) p: I+ ]: S0 ]1 S& {
    Rational Field
    : p; t; F; s: [zeta_112 R8 k. [) G* V: Q0 o  |6 F
    zeta_111
      N8 \# i) v. |% @8 p' |123' c- g7 w! I4 d, O" {3 ^- A
    7" Y- K  x) O) |; T# U  d
    7. H7 M7 X) z; x0 l* A% o
    Permutation group acting on a set of cardinality 6
    2 p2 T1 {7 Y1 Z5 P# v% ]9 FOrder = 6 = 2 * 3
    3 [2 W5 ^9 E/ [; ]; H    (1, 2)(3, 5)(4, 6). E# P6 `, L4 i& N  `1 |
        (1, 3, 6, 2, 5, 4)' o9 W& A6 R9 p3 ~' o( u  @
    Mapping from: GrpPerm: $, Degree 6, Order 2 * 3 to Set of all automorphisms of
    ( F4 p* \6 n+ t5 k2 |4 {CC
    2 s1 i% u4 X9 ~1 a, i+ x! `6 lComposition of Mapping from: GrpPerm: $, Degree 6, Order 2 * 3 to GrpPerm: $,
    ' T' u: f7 N$ T) M9 U" C# V0 jDegree 6, Order 2 * 3 and
    0 ?6 H, `0 f7 P- W! }5 ^Mapping from: GrpPerm: $, Degree 6, Order 2 * 3 to Set of all automorphisms of
    & }$ E- F( w  A- q# E0 d: BCC
    回复

    使用道具 举报

    lilianjie        

    43

    主题

    4

    听众

    204

    积分

    升级  52%

  • TA的每日心情
    开心
    2012-1-13 11:05
  • 签到天数: 15 天

    [LV.4]偶尔看看III

    本帖最后由 lilianjie 于 2012-1-10 17:41 编辑
    1 Y" f5 k% z5 H' k- J/ O
    lilianjie 发表于 2012-1-9 20:44 ( o! q5 m6 a8 D" M4 I2 F4 O
    分圆域:
    ! Z) U) N% ]8 N5 l) [& LC:=CyclotomicField(5);C;5 ?4 E" _( z& _% m4 _8 }
    CyclotomicPolynomial(5);

    0 B( q' E5 o/ q! ~. E# j' |7 A/ g, x8 W. v& k1 ?3 y$ F
    分圆域:
    * V/ L! V- E; m# @7 e0 J! O+ m分圆域:123, j3 m8 U' m; ^# v$ D: }7 D, I
    5 w5 Q% q& ^5 |
    R.<x> = Q[]
    6 l' v* ^1 k1 i& `5 D+ D3 uF8 = factor(x^8 - 1)4 O9 h  A" f6 T. ~5 d
    F88 \# a3 e. K/ V1 x' m: f
    2 {$ @# H5 O( }1 N5 B
    (x - 1) * (x + 1) * (x^2 + 1) * (x^4 + 1)(x - 1) * (x + 1) * (x^2 + 1) * (x^4 + 1)
    " O: R' s* T" }& e' ?4 h! ]* ^& P/ t$ z' X- x
    Q<x> := QuadraticField(8);Q;6 F! D( L7 M0 P- ~
    C:=CyclotomicField(8);C;- O$ ~  d4 B# h+ A5 x
    FF:=CyclotomicPolynomial(8);FF;
    # p, R+ C+ ?9 F
    ' @: ]8 t+ B! P9 L6 @' a& WF := QuadraticField(8);3 S0 a* H3 u; U
    F;- r* Y7 P: x% X2 z# ]5 t
    D:=Factorization(FF) ;D;
    4 |( ~- y+ ?6 L' yQuadratic Field with defining polynomial $.1^2 - 2 over the Rational Field
    , ]( I- a% E$ Q4 UCyclotomic Field of order 8 and degree 4: B# u- @7 i6 r  a
    $.1^4 + 1/ B! ~2 t# V8 R# @, k
    Quadratic Field with defining polynomial $.1^2 - 2 over the Rational Field* l7 I! |' V% {6 t  E. |' P4 x' m
    [
    % T  G- Z2 L; V- S    <$.1^4 + 1, 1>) Z% A/ \2 E. S( H( ?" H
    ]
    0 v- v. {$ w. i7 \$ {3 E4 V- Z0 E- |" _, k6 \$ @/ g6 L
    R.<x> = QQ[]
    : b) j: ]( w. V/ @" dF6 = factor(x^6 - 1)
    % \+ }: L8 M* c3 \F6& V5 N+ v0 \: p2 o! \5 h

    # Y& l9 y6 C2 k( @' s/ ?, r" V3 G(x - 1) * (x + 1) * (x^2 - x + 1) * (x^2 + x + 1)(x - 1) * (x + 1) * (x^2 - x + 1) * (x^2 + x + 1)
    ' `% S' K: v# ?# s2 J# I* d  O1 o! }8 S. N4 u" }) K7 M
    Q<x> := QuadraticField(6);Q;+ r3 {# G' ^; m+ C+ v+ Z0 k+ h
    C:=CyclotomicField(6);C;
    % H$ i7 O, |7 N3 gFF:=CyclotomicPolynomial(6);FF;: L! t7 C' E7 d2 K, ~5 y
    $ |: {+ g6 h% f6 F4 _
    F := QuadraticField(6);- ~! \; s5 c* E3 w
    F;( l4 Q1 L$ p% L) R* J# B
    D:=Factorization(FF) ;D;& @- `. o9 _  i5 n
    Quadratic Field with defining polynomial $.1^2 - 6 over the Rational Field
    ' T3 @" W+ u. T+ m6 t( D+ \Cyclotomic Field of order 6 and degree 22 O% H6 J. O- s+ f, K  s2 g
    $.1^2 - $.1 + 1; A" ^. K4 ^; i
    Quadratic Field with defining polynomial $.1^2 - 6 over the Rational Field( n6 `& _; K& @( u6 }& G
    [
    " H+ J/ [2 }3 J4 }    <$.1^2 - $.1 + 1, 1>
    * B* P' w+ T- ?8 X; T' |, B7 s9 k]
    , B" f6 ]8 }% U, M; F
    * _/ Q0 Y$ |1 k7 m" w9 C, pR.<x> = QQ[]$ D) M9 q3 L# f0 o3 x" `7 ]
    F5 = factor(x^10 - 1)7 T* P, F) N- P1 y: n& e
    F5
    # v8 d% l9 ^$ e5 A' M/ L(x - 1) * (x + 1) * (x^4 - x^3 + x^2 - x + 1) * (x^4 + x^3 + x^2 + x +
    9 W7 n1 s. s' D/ {1)(x - 1) * (x + 1) * (x^4 - x^3 + x^2 - x + 1) * (x^4 + x^3 + x^2 + x + 1). z6 G7 C( O0 y/ p4 {7 }5 K0 L0 j: }; }
    ( s& I4 a; L( s* W0 h: T/ J
    Q<x> := QuadraticField(10);Q;
    7 x5 J! X" M/ W# `C:=CyclotomicField(10);C;8 [- _" ^- a* A; m0 ~$ w( C
    FF:=CyclotomicPolynomial(10);FF;; F) k. `4 a$ g$ u3 o. Z
    / V+ ^' m, n! Q9 C7 W" P: I( u! h
    F := QuadraticField(10);
    # F9 d1 Z4 M" DF;
    ) G- n  z# n& h4 YD:=Factorization(FF) ;D;, F0 A4 J" E8 p7 R7 G
    Quadratic Field with defining polynomial $.1^2 - 10 over the Rational Field
    - W% Y/ b8 Z! s* n, c3 Z$ d: YCyclotomic Field of order 10 and degree 4
    1 o* f: `. ~1 z: W) J4 S$.1^4 - $.1^3 + $.1^2 - $.1 + 1
    ; [* C" ]  G' S( _( U$ u& G% z7 iQuadratic Field with defining polynomial $.1^2 - 10 over the Rational Field$ A& Q5 k! S# J; I
    [4 V* v  U' ?5 ~; D' O
        <$.1^4 - $.1^3 + $.1^2 - $.1 + 1, 1>2 T8 y- R& b6 J7 ?0 v' B2 e
    ]

    c.JPG (217.37 KB, 下载次数: 233)

    c.JPG

    aaaa.JPG (98.21 KB, 下载次数: 231)

    aaaa.JPG

    aaa.JPG (157.27 KB, 下载次数: 228)

    aaa.JPG

    aa.JPG (126.91 KB, 下载次数: 230)

    aa.JPG

    a.JPG (242.91 KB, 下载次数: 246)

    a.JPG

    回复

    使用道具 举报

    15

    主题

    4

    听众

    113

    积分

    升级  6.5%

  • TA的每日心情
    开心
    2012-1-13 11:49
  • 签到天数: 9 天

    [LV.3]偶尔看看II

    回复

    使用道具 举报

    您需要登录后才可以回帖 登录 | 注册地址

    qq
    收缩
    • 电话咨询

    • 04714969085
    fastpost

    关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

    手机版|Archiver| |繁體中文 手机客户端  

    蒙公网安备 15010502000194号

    Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

    GMT+8, 2025-11-8 09:33 , Processed in 0.836071 second(s), 102 queries .

    回顶部