QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 2120|回复: 9
打印 上一主题 下一主题

虚二次域例两(-5/50)

[复制链接]
字体大小: 正常 放大
lilianjie        

43

主题

4

听众

204

积分

升级  52%

  • TA的每日心情
    开心
    2012-1-13 11:05
  • 签到天数: 15 天

    [LV.4]偶尔看看III

    跳转到指定楼层
    1#
    发表于 2012-1-4 17:41 |只看该作者 |倒序浏览
    |招呼Ta 关注Ta
    本帖最后由 lilianjie 于 2012-1-4 17:54 编辑
    ; e. A( \) w6 @4 h) D, v
    ! ]  E7 P; t/ V( Q7 |  o. ~: H( m0 UQ5:=QuadraticField(-5) ;, v) H# H$ F; v  M( b
    Q5;0 E7 M& {! F6 C0 ~" u- F5 o3 h
    ! h7 J3 b% |; y" ]9 r" f& e
    Q<w> :=PolynomialRing(Q5);Q;1 u/ ^; F  _3 [3 N
    EquationOrder(Q5);
    / }& @2 _$ Y( SM:=MaximalOrder(Q5) ;
    - [" z4 E1 J5 z* S" G2 J+ hM;% ^# b) K; t+ b% `# U
    NumberField(M);
    $ x  n2 q, ]- f, Y/ Z: j: d8 rS1:=sub< M | 1 >;S2:=sub< M | 2 >;S3:=sub< M | 3 >;S4:=sub< M | 4 >;S5:=sub< M | 5 >;S25:=sub< M | 25 >;S625888888:=sub< M | 625888888 >;S625888888;$ q' V* F8 k/ M! m7 t
    IsQuadratic(Q5);' c$ k% I) {4 a4 @
    IsQuadratic(S1);( [0 a7 @% ?7 U) p
    IsQuadratic(S4);7 f- v. o6 p( _" }+ N) d3 r- `  R
    IsQuadratic(S25);: ?7 C" {) R9 z/ R7 m
    IsQuadratic(S625888888);. _4 y/ y* o( ^
    Factorization(w^2+5);  
    ( g% u4 X% A- U0 B: c* l( lDiscriminant(Q5) ;6 i( R4 P6 N  _
    FundamentalUnit(Q5) ;
    - l; h; _) J2 b9 E# D, ^/ t- OFundamentalUnit(M);  q0 t/ |' {# K0 `2 _
    Conductor(Q5) ;0 {& d9 ^7 b9 b+ d- [+ _) D

    , J$ A- Z; {" C) T: bName(M, -5);
    % H8 d7 n: X& Y/ R' i+ @! p  hConductor(M);
    * O  ^3 R! u" h3 t& V3 mClassGroup(Q5) ; : ?- E. Y+ d, K/ Z9 |- v  z5 n
    ClassGroup(M);8 o( S1 q+ C* \+ L- ?
    ClassNumber(Q5) ;2 x+ i- {; w% |" ?9 n: R
    ClassNumber(M) ;2 [3 v: l3 R" j, M5 z
    PicardGroup(M) ;  x7 K0 ]: q3 k' c1 }
    PicardNumber(M) ;  E4 |5 `7 b9 Q/ n6 K( D
    * x- ?: m5 z" g9 W! K
    QuadraticClassGroupTwoPart(Q5);, I& u6 G- ]2 D. {- K
    QuadraticClassGroupTwoPart(M);. f- K" J- H# V8 n
    NormEquation(Q5, -5) ;
    9 D1 `$ m+ Z! WNormEquation(M, -5) ;  Z9 U" v- k" S) ]* b
    Quadratic Field with defining polynomial $.1^2 + 5 over the Rational Field
    3 F! Z: A. V9 Q( ?. TUnivariate Polynomial Ring in w over Q5
    . B& D* g( x& j3 Y9 @Equation Order of conductor 1 in Q5' ^8 q) l% a: F( v, B+ R! W2 j1 t
    Maximal Equation Order of Q5$ M% ^' x1 V% c8 e( l$ o& v
    Quadratic Field with defining polynomial $.1^2 + 5 over the Rational Field
    4 C3 S  b  g. N7 z* h$ xOrder of conductor 625888888 in Q56 K/ i- Q. ~  ^& m# J( S( k
    true Quadratic Field with defining polynomial $.1^2 + 5 over the Rational Field7 L+ u5 D! O. A4 z
    true Maximal Equation Order of Q56 V( ?1 `$ u1 ?  g/ S, s
    true Order of conductor 1 in Q5! d  g5 o* l7 `
    true Order of conductor 1 in Q5
    ! z8 D% A+ c# X# B& F- ztrue Order of conductor 1 in Q5
    * T' s3 I5 l! z. G. [[
    1 ~9 h" i0 r  d+ R$ D    <w - Q5.1, 1>,
    & m* _0 T, E; s8 B# A: @$ d    <w + Q5.1, 1>4 \# s4 h' U+ K- T' z
    ]
    % }$ r# e* Y+ Z& Z( W-20
    . H4 F* h% s: K2 S( U+ n  v9 k1 I6 D3 e1 B8 w; x( R
    >> FundamentalUnit(Q5) ;4 h# c: Z$ X! u
                      ^+ w4 N. ~, W# B1 M) N
    Runtime error in 'FundamentalUnit': Field must have positive discriminant" M. d; c( ?& T. \5 Y; M
    # n# u: C$ Y8 ?9 s

    ! j% I( I) N6 ]' A. H, z3 K& D>> FundamentalUnit(M);* N  u2 A' S* b% U) Q' Y% C
                      ^+ x. N# ^" z4 Q
    Runtime error in 'FundamentalUnit': Field must have positive discriminant
    ! M8 a+ Q, ~' S7 m% i$ d$ w2 z$ \5 s: R) o) }. O
    20
    6 g9 K2 {3 O! u
    4 z" r/ W& ]; w5 c( r>> Name(M, -5);# Q4 Z. i' c0 z- C8 A: a7 C
           ^
    # M. {" q& z/ G& ZRuntime error in 'Name': Argument 2 (-5) should be in the range [1 .. 1]+ h- Y! B) c8 [8 E3 T+ P1 [

    / C* A9 Z0 I/ B9 V& q6 a1 Y1
    5 I1 w% T, v3 lAbelian Group isomorphic to Z/21 y6 ?5 d0 f2 D# e
    Defined on 1 generator3 S; m' q- _( c% n+ B/ [6 H
    Relations:2 }8 @* @$ e' I/ ~
        2*$.1 = 0
    / y/ X6 Y1 z- z2 p) O% l! Y0 b, oMapping from: Abelian Group isomorphic to Z/2; W( k( u% v0 T  F9 x& p! f
    Defined on 1 generator' Q. M  a: |3 A5 E" h4 @
    Relations:
    " b8 n* P* T" P7 z    2*$.1 = 0 to Set of ideals of M
    : y9 Z+ C8 N6 e* o! ]Abelian Group isomorphic to Z/2
    2 U" Q; Q2 ?( ~- d: iDefined on 1 generator4 U- k# O4 t0 V& I
    Relations:, o7 X* L2 C4 ~5 I- Y# p" A
        2*$.1 = 0
    % k5 d1 a7 g. B6 vMapping from: Abelian Group isomorphic to Z/2% n& c. i- Y( _, M  e3 p
    Defined on 1 generator& z- Z8 k/ e6 L* h9 q9 Q$ r7 L7 D" c
    Relations:
    % W8 d4 e3 Y1 \! O! t    2*$.1 = 0 to Set of ideals of M
    & t# u8 K8 `) u1 Q; Z0 I2 {# Y2
    6 b4 X7 B% l# X3 R% [2! Y9 y2 ?  y7 y, b
    Abelian Group isomorphic to Z/2
    6 R( o1 m8 y3 o6 M, mDefined on 1 generator
      n; s& S" w/ F5 O/ Y) B5 ARelations:
    ! [' u- U. C! y3 \    2*$.1 = 0, Q: U: h3 y5 C
    Mapping from: Abelian Group isomorphic to Z/2
    , X3 i: g9 E6 a  i8 ^Defined on 1 generator9 Z: S- ~& T  t$ l
    Relations:
    & M5 d4 a- ]$ V. a) I1 T& t    2*$.1 = 0 to Set of ideals of M given by a rule [no inverse]
    : d: K9 _& f6 ?  a2( i! w$ E8 i% R& [7 O
    Abelian Group isomorphic to Z/2
    % ^& Z. X$ u0 {0 R. tDefined on 1 generator
    ) p( E$ b3 ~% f% qRelations:
    8 l/ K) Q$ \( a* U1 O* `    2*$.1 = 0' d' b) `; j$ i. ~7 d2 n+ Y, t5 v
    Mapping from: Abelian Group isomorphic to Z/27 Y$ i) ~  m' ~4 b0 O2 E
    Defined on 1 generator
    1 O8 u% u. [6 l4 x1 F8 IRelations:& Z& ]( j4 ~9 x1 l3 j. ]! w
        2*$.1 = 0 to Binary quadratic forms of discriminant -20 given by a rule [no
    . B# u4 C$ Z  x  B+ c" h$ x, ~inverse]
    ; X' [: Q9 Z6 p( m; O; J( p+ ~Abelian Group isomorphic to Z/2' o) `: T- h5 Q, |: r
    Defined on 1 generator! p- |8 X) u* z; J
    Relations:
    5 `* C- y; Q- f- A    2*$.1 = 0
    ) N+ s: K7 D/ E& e2 m5 N; BMapping from: Abelian Group isomorphic to Z/2/ ]! x7 d! w/ ^0 ^: m) |7 ~/ D
    Defined on 1 generator
    % L: t  n6 K/ P$ TRelations:
    5 `( Y, w2 s2 @- q9 _) e& x/ }    2*$.1 = 0 to Binary quadratic forms of discriminant -20 given by a rule [no
    + g: W  _; Y# w6 x5 }' C' N5 y  {1 Kinverse]" K* d/ l6 `- k' W
    false. {: j3 P# \5 \! B9 I
    false7 q" L# I* w) A* ~. p# V0 h
    ==============$ O! o: ~1 [& v0 k% v5 h5 g% Y
    & V. G5 k: r& h' T' c, E; o
    3 f- L# x6 Z0 f" \0 F5 w
    Q5:=QuadraticField(-50) ;
    8 Y. Q, ?) \3 r: w5 @9 S! {Q5;! A/ p# z- b$ q! R* |
    / U1 ?! s* \0 n" z4 h3 m& O+ |
    Q<w> :=PolynomialRing(Q5);Q;. I9 Q$ P' @. t/ a! U
    EquationOrder(Q5);1 P0 W( C- h/ R9 k. x
    M:=MaximalOrder(Q5) ;2 W( ^0 j! l' M9 c
    M;
    + }0 l" x- v& w5 N6 ENumberField(M);
    8 v8 q) a2 J2 u' R, f: IS1:=sub< M | 1 >;S2:=sub< M | 2 >;S3:=sub< M | 3 >;S4:=sub< M | 4 >;S5:=sub< M | 5 >;S25:=sub< M | 25 >;S625888888:=sub< M | 625888888 >;S625888888;9 g# m2 G: a9 U7 V( m' W9 y
    IsQuadratic(Q5);4 a9 N, H- M, u$ _. M
    IsQuadratic(S1);
    * }: g4 @3 D+ z: j5 k! \0 u6 ]  i6 IIsQuadratic(S4);
    & @2 e9 l: k7 u6 h# [- eIsQuadratic(S25);3 W: y" J) e$ R& S8 B$ W) p/ ?4 Z
    IsQuadratic(S625888888);
    : x/ W) Q% r+ ?8 l) O( vFactorization(w^2+50);  ! f6 @, n* S3 K) c0 O7 a: H- G3 F+ K
    Discriminant(Q5) ;
    2 d( ^* L4 E+ w" D3 sFundamentalUnit(Q5) ;( M8 f( i$ c& \. {
    FundamentalUnit(M);
    " b4 H3 R) s5 x9 k; ^Conductor(Q5) ;
    5 U6 \3 h( U( a
    2 }5 J8 K# [. Y( r  m2 ]Name(M, -50);
    1 o, ]/ K# [0 tConductor(M);6 I0 }2 T0 _) e( \- L. D
    ClassGroup(Q5) ; - K4 a) A  a) P
    ClassGroup(M);
    0 Y+ b/ t" {8 G4 `- ^ClassNumber(Q5) ;' E1 J  m" Y  t; K
    ClassNumber(M) ;- z( D) l( }- c" \. N) l  G
    PicardGroup(M) ;
    5 \; c, V% Q9 D/ W  K# zPicardNumber(M) ;
    ! I% Y8 f: m; s( O# N2 o# S* X) `9 t
    QuadraticClassGroupTwoPart(Q5);( N* Q- I# @% ?  l
    QuadraticClassGroupTwoPart(M);( t* N2 z( Y+ v: Z+ s4 V  G
    NormEquation(Q5, -50) ;
    0 A- n, X7 q3 gNormEquation(M, -50) ;
    ; P5 T, s# u# d. b2 f' P
    ! F: H: t7 ]1 EQuadratic Field with defining polynomial $.1^2 + 2 over the Rational Field
    9 n# t" c- X& v1 q2 ?Univariate Polynomial Ring in w over Q5& ]: H5 C0 `* v) c  R
    Equation Order of conductor 1 in Q5, y+ a$ O. F5 y1 G( u
    Maximal Equation Order of Q5( I; Q1 N. D) f) O8 r6 B/ z
    Quadratic Field with defining polynomial $.1^2 + 2 over the Rational Field
    ! ~0 X6 k& p4 c8 f+ K$ sOrder of conductor 625888888 in Q5
    4 d: h, W0 t# O* ntrue Quadratic Field with defining polynomial $.1^2 + 2 over the Rational Field6 U5 z6 K/ W3 ^5 f, |* K) j+ d
    true Maximal Equation Order of Q5
    ' `2 b4 k  f; t4 |9 |true Order of conductor 1 in Q5
    + W2 N8 `  B) ?true Order of conductor 1 in Q5
    % Y5 K1 ?' r, J! V% ]$ v* _, H: R% L, htrue Order of conductor 1 in Q54 B* O0 m' F7 L( U( V4 [  U! z9 W
    [' Q( q3 V+ W# u3 |% W2 n
        <w - 5*Q5.1, 1>,5 D7 S; d/ q+ T+ f, n4 S4 M# f
        <w + 5*Q5.1, 1>' ~6 ]' L9 e+ r- m, R. ^$ o
    ]9 [+ [$ B2 L- q# F2 i, d' V4 u0 ^
    -8+ j# E6 k8 j. E

    - S4 z5 c' Q1 b) }& v4 y>> FundamentalUnit(Q5) ;
    0 j" ^8 Y& |5 q. n2 G                  ^
    : _+ Q: j+ L# L7 n) W; WRuntime error in 'FundamentalUnit': Field must have positive discriminant# a6 H& I* y( v, @7 I
    9 }2 q  D: }+ J% g

    ! c! \% U4 _6 N: d, M/ C8 m>> FundamentalUnit(M);
    4 v9 O1 j: k" {' J' F# X: {' V                  ^4 Q% C* Q' G! i) l$ K
    Runtime error in 'FundamentalUnit': Field must have positive discriminant
    / |$ w: c1 R. B2 e7 I; o1 ]) h
    8
    * m: m8 p% {3 U
    ( F* M2 n1 S' K" J>> Name(M, -50);# D0 L- b2 ~4 p* D
           ^
    1 j0 U7 B4 V8 ~+ ~Runtime error in 'Name': Argument 2 (-50) should be in the range [1 .. 1]8 r: F2 Y2 b4 w9 \2 i5 r

    , i2 Y- _" Q) C6 Z" ?8 [+ F1
    6 u( g& K7 l# R5 K1 F" FAbelian Group of order 1
    3 I- m6 X' m5 [0 J2 M0 }Mapping from: Abelian Group of order 1 to Set of ideals of M& |0 x9 |1 o+ Q- b4 |+ V: Y
    Abelian Group of order 1; v8 m; w$ X0 p' E2 u
    Mapping from: Abelian Group of order 1 to Set of ideals of M
    ( b5 t2 z# C) K- ~7 r' M- o7 N1
    ' M9 l6 z4 o, {1
    . k# r6 O) i' }# ?4 t! r" L5 xAbelian Group of order 1& T7 l: o+ s$ e* u
    Mapping from: Abelian Group of order 1 to Set of ideals of M given by a rule [no' B2 P' ^7 M4 g- ]6 \+ t2 K3 H2 g
    inverse]/ ]: f4 j  U& Y8 q- [$ K( {
    1& _, [& @- x% P& p# S' J4 E
    Abelian Group of order 1! ~* }5 Y4 A9 N. f
    Mapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant
    1 u, K8 R. ?! ~, l& p$ O-8 given by a rule [no inverse]  }- l1 N0 w9 S" ^: i( w
    Abelian Group of order 1
    7 H. f" f8 I  \: d& AMapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant* r0 O( J, i' {) H& H, _
    -8 given by a rule [no inverse]! p* u6 F' p. e0 a- m  k5 U9 j8 H, {
    false
    5 ^) S  |. W: H5 Sfalse# z( d" W: m* f. F' v+ l, ~
    zan
    转播转播0 分享淘帖0 分享分享0 收藏收藏0 支持支持0 反对反对0 微信微信
    lilianjie        

    43

    主题

    4

    听众

    204

    积分

    升级  52%

  • TA的每日心情
    开心
    2012-1-13 11:05
  • 签到天数: 15 天

    [LV.4]偶尔看看III

    看看-1.-3的两种:/ z& B1 e4 s& ?5 M( b4 R
    1 Z' w  H- `; q/ _* `
    Q5:=QuadraticField(-1) ;
    8 C& H; `. u+ N2 |! W- Z: p  fQ5;
    ) N8 [* A6 M& L1 y! U- j
    + ]# \: K  i; y+ R# bQ<w> :=PolynomialRing(Q5);Q;
    # A. {! F; E3 L# ZEquationOrder(Q5);9 ]2 `9 h: Y) g. q/ R% K+ _
    M:=MaximalOrder(Q5) ;
    2 S* q; C0 W3 E) T! W2 G) S9 \M;
    - ^: j  a& t8 f$ gNumberField(M);, W) l. L! j3 P% R( G" v, m2 h
    S1:=sub< M | 1 >;S2:=sub< M | 2 >;S3:=sub< M | 3 >;S4:=sub< M | 4 >;S5:=sub< M | 5 >;S25:=sub< M | 25 >;S625888888:=sub< M | 625888888 >;S625888888;
    , C* Z+ m4 Q! R: iIsQuadratic(Q5);
    ( D7 \; d' s* r$ {' r$ a# ^IsQuadratic(S1);) t0 @, T; s1 t# `( o2 j
    IsQuadratic(S4);
    9 V  d; d7 p' m9 G: w  ~% v3 kIsQuadratic(S25);
      }" t$ B+ ~/ p2 s( z/ I. c8 oIsQuadratic(S625888888);
    " ?, I, F# \* q! }0 vFactorization(w^2+1);  
    / ?$ L' ^0 _# v& J5 x0 XDiscriminant(Q5) ;8 D( J: S8 L. v5 e3 ^
    FundamentalUnit(Q5) ;& ?3 R6 z: h7 E2 ~9 @( T
    FundamentalUnit(M);
    1 X3 Y' m2 l! n: u6 ]Conductor(Q5) ;
    ' @1 ]* Q% b/ ~! M* Z7 D
    . Y' Q7 C' E, R0 d6 yName(M, -1);
    5 ^. v1 {3 L7 K, D: |- sConductor(M);
    ) {, o; P% y% f2 s- M! c: JClassGroup(Q5) ; 7 q: F9 L- Z# ^9 n5 z
    ClassGroup(M);
    : U5 J$ u) p5 C' F( b1 OClassNumber(Q5) ;( A2 E$ [: `1 _$ |1 I( r+ c
    ClassNumber(M) ;
    ( }6 a2 k/ {: Q# X/ zPicardGroup(M) ;2 x, O4 O! C; r8 p" I# f7 f
    PicardNumber(M) ;
    8 a8 h2 }7 \/ U" v3 A8 k+ V2 K9 e" x; k5 ?8 |
    QuadraticClassGroupTwoPart(Q5);. Z+ c* F- e, A$ T# c' h
    QuadraticClassGroupTwoPart(M);
    ' Q! [7 {! J# d/ i  F' ANormEquation(Q5, -1) ;
    8 M5 n$ G8 C9 t  y4 N  L% }NormEquation(M, -1) ;+ n1 \# t/ ?- P8 g3 ]9 M

    ! {0 }: f! I$ G: P; m4 oQuadratic Field with defining polynomial $.1^2 + 1 over the Rational Field
    - J6 D$ h* a% [: E* jUnivariate Polynomial Ring in w over Q5
    1 I4 w  u4 H6 r6 D4 M9 W0 U: Q! hEquation Order of conductor 1 in Q55 y1 v5 I& U9 s
    Maximal Equation Order of Q5
    4 [8 i' G  c( e" D, p5 _" _) EQuadratic Field with defining polynomial $.1^2 + 1 over the Rational Field
    2 g7 N& v' ?! v3 y9 @: c0 }Order of conductor 625888888 in Q5
    1 c0 Z7 @! S4 M& p5 ytrue Quadratic Field with defining polynomial $.1^2 + 1 over the Rational Field
    * u2 C( q  L' A" x  S* H* r; s7 Ptrue Maximal Equation Order of Q5) e- k5 N( h1 V* t! b
    true Order of conductor 1 in Q5: C9 f, B% a' M+ Y
    true Order of conductor 1 in Q5# G1 m0 e- `) k
    true Order of conductor 1 in Q5
    . N. O8 }' w* D" r- P; u3 L[
    - N7 K$ k& [9 o4 Y& k" {    <w - Q5.1, 1>,
    0 _5 R% c! \  e    <w + Q5.1, 1>
    % W) L+ T% E$ m) @# o3 U- a1 U]8 C" f2 G) m3 R
    -44 {% {+ M$ e' E
    7 l  W& h0 T7 K2 J6 _
    >> FundamentalUnit(Q5) ;8 X- l5 j4 j* q# G6 N2 q
                      ^0 R: N6 z, Y: Y' Q% H& r1 K
    Runtime error in 'FundamentalUnit': Field must have positive discriminant
    + m  s+ @$ Q2 U  O2 Y% w" O6 X# }* t6 T/ P
    , i  ?! f8 g9 ?8 F/ z
    >> FundamentalUnit(M);9 @+ m0 y7 I4 R3 _& N# U
                      ^$ ?+ h: |9 }7 i4 B" v$ X
    Runtime error in 'FundamentalUnit': Field must have positive discriminant$ y$ {0 A/ ~+ e. ?& V8 @
    1 L" X) c% X# g( V* e
    4# Z5 I$ \7 |- B! x2 z4 v
    * B8 `  W( @2 Z, K2 v( {
    >> Name(M, -1);
    : e$ Y: P6 {* _       ^9 R0 O5 f$ I# i" w1 K, A
    Runtime error in 'Name': Argument 2 (-1) should be in the range [1 .. 1]
    9 q1 b6 j$ i" N* g* o
    ( v( d$ n& z6 V( {9 ?( L' W1
    . t: U# P( j  H4 i8 R5 KAbelian Group of order 16 E6 \, W# Y. P; E% p2 ~
    Mapping from: Abelian Group of order 1 to Set of ideals of M
    % d" z3 W* _( t7 d! w/ ^. UAbelian Group of order 1! f. o; I* `3 _& e2 Z4 y8 c. q
    Mapping from: Abelian Group of order 1 to Set of ideals of M' R6 M$ }3 c, W5 M! L& V" L, `
    1
    * C( o, Z2 U& W  p1
    8 Z5 T2 P# A  F, e- p5 y4 {  [. VAbelian Group of order 1
    " M% G5 |; J$ \; [" \# v2 jMapping from: Abelian Group of order 1 to Set of ideals of M given by a rule [no
    ( q' t# o6 e6 A2 Minverse]
    ' C6 x% r9 Q5 U3 e; m5 {10 q+ i; M. N% q6 [
    Abelian Group of order 1% w3 x  s; `1 m" P
    Mapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant
      F' y. t$ g. W; B4 |2 E-4 given by a rule [no inverse]# c' T" k, P1 Y6 P
    Abelian Group of order 1
    * p' j* a. ~+ \Mapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant! k- G" g  T7 L% t9 e
    -4 given by a rule [no inverse]4 `# t2 \8 q( ^* ~) P
    false# }4 Q/ Q# F: ]) f6 y5 ^- x# S
    false0 q9 u5 R1 G, X
    ===============! T/ M' D" {( j5 L1 A

    . M' ], \. h  Q( Q/ fQ5:=QuadraticField(-3) ;# H; L8 E9 {/ m5 m
    Q5;; Z0 v/ }& R  ]+ Y- e& z) o
    8 Z; X; r! ~& |  }5 z9 b6 R( Z; H' j; C4 r
    Q<w> :=PolynomialRing(Q5);Q;. V: U5 F2 A; E' q4 R
    EquationOrder(Q5);. [% q* Z& i# P+ `& H9 {
    M:=MaximalOrder(Q5) ;3 A' T4 ^: M4 s/ w5 q! r% w
    M;7 ?) V" }3 f) Q- I$ `
    NumberField(M);
    4 a- v: n1 J  [' RS1:=sub< M | 1 >;S2:=sub< M | 2 >;S3:=sub< M | 3 >;S4:=sub< M | 4 >;S5:=sub< M | 5 >;S25:=sub< M | 25 >;S625888888:=sub< M | 625888888 >;S625888888;! F1 C; k8 ^$ z7 X; A
    IsQuadratic(Q5);( d3 k! o% @9 g4 l9 c; `4 k  [
    IsQuadratic(S1);
    7 ?: Q$ J/ b: y( h! w! C; lIsQuadratic(S4);9 L. O1 ~- @3 d: o5 P
    IsQuadratic(S25);
    % G4 X3 T1 ~- N0 ?IsQuadratic(S625888888);$ p- X7 ?4 B# T, d
    Factorization(w^2+3);  . I9 D% l( H; Y' ?! q) d3 O9 q% m0 q
    Discriminant(Q5) ;
    , w& y+ c* @' S% p  GFundamentalUnit(Q5) ;4 P" z6 h, H$ E  W8 U3 L$ H
    FundamentalUnit(M);
    ' B) Q: g* a" w, q2 e, N7 tConductor(Q5) ;
    $ \" r, E7 c  G
    0 c" E* Z% D  _. ~( t7 wName(M, -3);- n" P# W0 _0 T6 n8 k2 V. V
    Conductor(M);, g+ a: \& Z: a  N
    ClassGroup(Q5) ; " J9 v: ^) V, g  I6 u4 R
    ClassGroup(M);. v  s1 K( n3 j1 L0 B6 Y
    ClassNumber(Q5) ;& |" ~/ s: w# H, O0 A; R" r9 J
    ClassNumber(M) ;% s9 F- g; }0 R6 h6 w/ J) ^: |
    PicardGroup(M) ;$ I7 S# K5 z9 O8 b8 W. \
    PicardNumber(M) ;) g  H& `% W! j; b9 q. l; j; y7 G

    . T6 U) p$ @5 ?' H3 E$ dQuadraticClassGroupTwoPart(Q5);: \" |- o/ e7 @# q
    QuadraticClassGroupTwoPart(M);
    , p& L; O0 c5 t4 I: k) ?% eNormEquation(Q5, -3) ;3 o; v6 h4 D3 E- N/ O7 B
    NormEquation(M, -3) ;
    : D! f& e" j+ `5 q; ~1 ^) `( r! m9 I: F6 _' m6 i7 S0 u
    Quadratic Field with defining polynomial $.1^2 + 3 over the Rational Field8 l: f: z  i. ]
    Univariate Polynomial Ring in w over Q5
    " c( B$ v' ?* Q) m; z+ E. b5 N. hEquation Order of conductor 2 in Q5
    + }' ?7 a* y5 {2 g$ V# I: `+ B0 t' iMaximal Order of Q5$ s# o$ v+ i8 ]3 L
    Quadratic Field with defining polynomial $.1^2 + 3 over the Rational Field0 f8 T! [( z( I/ d3 C
    Order of conductor 625888888 in Q5( L8 _% S( n4 S/ S4 {- y
    true Quadratic Field with defining polynomial $.1^2 + 3 over the Rational Field
    - I1 N3 h9 X' }- a0 I; Ntrue Maximal Order of Q51 k! {! S, l* E( b" h" j
    true Order of conductor 16 in Q5" J. Y+ v# Q$ n' L' A
    true Order of conductor 625 in Q5
    + C' k7 R& l4 K7 x6 atrue Order of conductor 391736900121876544 in Q5* t- I4 `  G9 l. P- D1 ]' `1 f" @
    [
    6 a  a4 @$ z- H* ]" a2 X    <w - Q5.1, 1>,, E2 X# C4 X0 {( r. d# h2 E, p8 O' l8 I
        <w + Q5.1, 1>
    ) a( o$ N' g  _8 r]% n. u; d% _4 Q5 e, [; v7 b% U
    -32 L/ q% ?# j4 ^5 a! @

    3 @, S1 [2 v6 T. v>> FundamentalUnit(Q5) ;$ c" a3 \1 O4 l* O
                      ^
    # e8 j4 I! l( U+ {  CRuntime error in 'FundamentalUnit': Field must have positive discriminant
    % B0 W$ i5 [, O; a
    % h7 A  U: E5 U9 e+ H7 ], u, V" |0 `/ K: Z0 C2 X
    >> FundamentalUnit(M);, {& f) `' _- x* q. h
                      ^
    0 o! o! d7 ^) U, a' P; MRuntime error in 'FundamentalUnit': Field must have positive discriminant
    " ~9 X8 i) O  h3 G3 }$ i  t3 C
    % ^( \& S+ s, z& C3
    ' K8 C1 J. _# g9 F& s3 }) A: r! s" h$ h+ W
    >> Name(M, -3);5 n$ t/ q' k9 K3 A
           ^; G! y8 s- m) `( N2 y& a% }9 Z
    Runtime error in 'Name': Argument 2 (-3) should be in the range [1 .. 1]
    4 I" T9 d# s  O# x4 R& H' |: }! B4 `3 O
    1
    % O+ g  v' W/ k, B) L# rAbelian Group of order 12 B. _) q$ ~- n( h+ R
    Mapping from: Abelian Group of order 1 to Set of ideals of M
    / i& d* Q4 n+ b4 E. }6 qAbelian Group of order 1# a; @, z/ `* X+ V$ ^
    Mapping from: Abelian Group of order 1 to Set of ideals of M4 `9 L. o  G, D% ?. G
    1
    5 y( Y/ P5 O1 f! m* z10 o7 x# D: C$ X: w
    Abelian Group of order 15 i+ z$ g! I! [
    Mapping from: Abelian Group of order 1 to Set of ideals of M given by a rule [no+ M( f4 L% y( p, [5 |5 W7 n4 I
    inverse]
    4 |; v  y/ c1 B3 ^, H1$ x, M, P7 Q! U
    Abelian Group of order 1
    7 A" B6 v# W" tMapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant
    0 Y  J0 _3 h4 d' A" w% k) _-3 given by a rule [no inverse]
    : Q0 i  }- A$ mAbelian Group of order 13 B. S! x. x3 ]4 k( f/ j
    Mapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant0 Q+ Y: e. ?3 n% b. G
    -3 given by a rule [no inverse]! |# `% |8 S- M* X8 [
    false
    " G9 x% O( m0 t3 c8 ]. Q: c+ Sfalse
    回复

    使用道具 举报

    74

    主题

    6

    听众

    3283

    积分

    升级  42.77%

  • TA的每日心情
    无聊
    2015-9-4 00:52
  • 签到天数: 374 天

    [LV.9]以坛为家II

    社区QQ达人 邮箱绑定达人 发帖功臣 最具活力勋章

    群组数学建摸协会

    群组Matlab讨论组

    群组小草的客厅

    群组数学建模

    群组LINGO

    回复

    使用道具 举报

    lilianjie        

    43

    主题

    4

    听众

    204

    积分

    升级  52%

  • TA的每日心情
    开心
    2012-1-13 11:05
  • 签到天数: 15 天

    [LV.4]偶尔看看III

    本帖最后由 lilianjie 于 2012-1-5 15:20 编辑 2 g& w9 r* [: a0 o: U# s

    # H4 w! U; D- W, U+ S8 x5 p( VDirichlet character4 E0 x! O) z, P. m: A  f
    Dirichlet class number formula
    + O8 K0 L2 E% B
    % i) O! L9 J0 Z3 [7 ?虚二次域复点1,实点为0,实二次域复点0,实点为2,实二次域只有两单位根& {: f' m# e* d
    * x# S. H0 l2 f8 J2 f- q
    -1时,4个单位根1,-1, i, -i,w=4,            N=4,互素(1,3),    (Z/4Z)*------->C*      χ(1mod4)=1,χ(3mod4)=-1,h=4/(2*4)*Σ[1*1+(3*(-1)]=10 |- G1 j" w* I8 i2 A; v: H' h" F
    5 M+ f/ P7 P$ U8 I1 C8 S
    -3时  6个单位根                             N=3  互素(1,2),    (Z/3Z)*------->C*         χ(1mod3)=1,χ(2mod3)=-1,7 V5 R- h# ~5 t# A3 D$ U# Q
    h=-6/(2*3)*Σ[1*1+(2*(-1)]=1
    ) A+ e" l: }7 y; M2 l; a3 B( ]( a- u: I
    1 p3 g6 F8 F7 _7 b-5时  2个单位根                              N=20   N=3  互素(1,3,7,9,11,13,17,19),    (Z/5Z)*------->C*         χ(1mod20)=1,χ(3mod20)=-1, χ(7mod20)=1, χ(9mod20)=1,χ(11mod20)=1,χ(13mod20)=1,χ(17mod20)=1,χ(19mod20)=1,2 W; d- e4 `- e! g+ ]+ B

    / N  k+ x  }' a3 f/ w1 }& l8 F! i6 L! a
    6 r# c' Y  X$ u* p& o
    h=2/(2*20)*Σ[1*1-3*1-7*1+9*1-11*1-13*1+17*1+19*1]=2; i* ~$ x1 s( C6 d
    1 P+ E) v# O' E- m+ Q! O
    5 ^8 p4 I( T9 Q5 N4 f; @$ ]3 w
    " W  L, x6 T( d9 |9 f
    -50时  个单位根                          N=2008 X/ L5 V- A/ q- E% C% a
    回复

    使用道具 举报

    15

    主题

    4

    听众

    113

    积分

    升级  6.5%

  • TA的每日心情
    开心
    2012-1-13 11:49
  • 签到天数: 9 天

    [LV.3]偶尔看看II

    Dirichlet character

    21.JPG (79.18 KB, 下载次数: 175)

    21.JPG

    11.JPG (74.76 KB, 下载次数: 173)

    11.JPG

    回复

    使用道具 举报

    15

    主题

    4

    听众

    113

    积分

    升级  6.5%

  • TA的每日心情
    开心
    2012-1-13 11:49
  • 签到天数: 9 天

    [LV.3]偶尔看看II

    回复

    使用道具 举报

    lilianjie        

    43

    主题

    4

    听众

    204

    积分

    升级  52%

  • TA的每日心情
    开心
    2012-1-13 11:05
  • 签到天数: 15 天

    [LV.4]偶尔看看III

    本帖最后由 lilianjie 于 2012-1-9 20:30 编辑 3 V, |# a/ S9 z$ R) a

      m; a8 h" {% r. iF := QuadraticField(NextPrime(5));3 c9 U& C# J% ~: T: N

      C- Z( U8 f1 {3 oKK := QuadraticField(7);KK;
    - z5 o& k$ y" s- VK:=MaximalOrder(KK);4 R( F' N1 Y  A9 V4 m2 j0 B1 b
    Conductor(KK);
    7 j/ Q& a& K+ U5 T1 Q7 R( f: }ClassGroup(KK) ;
    " m- w7 k9 D) l& D$ TQuadraticClassGroupTwoPart(KK) ;; Y) o( H4 u4 A- j
    NormEquation(F, 7);; |7 h# C! N: G. h& f- u! O
    A:=K!7;A;% q: F! a9 ~" b, v7 \& B( M
    B:=K!14;B;* I/ M1 R, F4 V9 S
    Discriminant(KK)5 Q8 I) N5 |0 j. F$ x) o

    * J# J: V% \% D3 q! ?% ^% z' WQuadratic Field with defining polynomial $.1^2 - 7 over the Rational Field
    ! a6 v. g& ^" u$ B) b- Y281 L5 X1 e1 {% s  X
    Abelian Group of order 1, L! p. X6 Q+ C8 u- q: K: @, J# w
    Mapping from: Abelian Group of order 1 to Set of ideals of K, L6 w) X2 \, }
    Abelian Group isomorphic to Z/26 U" Y6 J& T, ^
    Defined on 1 generator
    ! V6 d3 x3 a9 l# YRelations:
    3 w% Y5 o  r: h# P, X* \    2*$.1 = 0( o' W8 e! E1 z; T$ f
    Mapping from: Abelian Group isomorphic to Z/28 E: l8 ^; F8 U- }: i( C
    Defined on 1 generator
    + v. P: d+ T7 W  Z0 D7 uRelations:
    & L/ F2 a6 _: z+ ^( K; X    2*$.1 = 0 to Binary quadratic forms of discriminant 28 given by a rule [no
      k: L# Y" Y0 y4 yinverse]2 z* D& x6 W6 e. J1 i8 s
    false0 _$ H+ Y9 O6 X- ]9 S
    7
    8 F0 ]7 l. ^( k, m! R14. e. l8 l4 b8 g5 ]% ^" t4 t
    28
    回复

    使用道具 举报

    lilianjie        

    43

    主题

    4

    听众

    204

    积分

    升级  52%

  • TA的每日心情
    开心
    2012-1-13 11:05
  • 签到天数: 15 天

    [LV.4]偶尔看看III

    本帖最后由 lilianjie 于 2012-1-10 11:23 编辑
    7 {( x1 i) @& T6 [5 S) [2 e: K1 I' n
    11.JPG 6 ?" S1 [6 {4 \- i* M( c& t
    * [2 K% E9 {; C$ G+ N4 b( y
    3212.JPG ) n  K  {1 d. G1 B  J' m7 Q1 w; F' S
    3 w: F; o- f- w5 j: D: l7 e
    123.JPG - K% b- S, Q7 u( n9 `0 c& e
      \2 @; _( h+ |
    分圆域:+ V- y; v0 _( w- w* `
    C:=CyclotomicField(5);C;
    & |+ i7 N- u" H5 SCyclotomicPolynomial(5);
    $ ^) P0 I* P* d* ^9 KC:=CyclotomicField(6);C;
    : V3 ~1 Y" O0 |9 E# {) WCyclotomicPolynomial(6);
    5 S- j7 {' U( B- y( d! [. vCC:=CyclotomicField(7);CC;& ^& E1 h/ P7 ^; Y# G5 z
    CyclotomicPolynomial(7);
    ) v' K8 `7 L) L4 a2 hMinimalField(CC!7) ;3 D* L/ ]% i( c
    MinimalField(CC!8) ;# Y) ?- g/ R9 c& O
    MinimalField(CC!9) ;
    ! {. T. v; W# R. z( _" F. s) oMinimalCyclotomicField(CC!7) ;
    : j7 A2 E! t7 o! }- u' u, t2 ERootOfUnity(11);RootOfUnity(111);- W; n, m7 x0 _9 X; ?1 a# E9 t
    Minimise(CC!123);
    & u* J7 G. Q" E) V! ]& NConductor(CC) ;8 H4 m- I8 K" C5 A" E0 F
    CyclotomicOrder(CC) ;) R/ ^- S3 V* m) J+ ?+ t
    6 a1 o! y, e+ G( `1 _
    CyclotomicAutomorphismGroup(CC) ;0 j, B/ b4 ?$ L
    $ l! k' \+ _  G
    Cyclotomic Field of order 5 and degree 4
    7 [- P7 S7 N3 C$ k; C! }$.1^4 + $.1^3 + $.1^2 + $.1 + 1
    , a( D% Y% N; c% t! tCyclotomic Field of order 6 and degree 2
    . A  ^1 Z& ~( B$.1^2 - $.1 + 12 c  N* O6 \+ V, S& Y4 G5 V
    Cyclotomic Field of order 7 and degree 6
    3 f  R- l* P' A" L% X6 l$.1^6 + $.1^5 + $.1^4 + $.1^3 + $.1^2 + $.1 + 1$ l, B. z: R: M1 @
    Rational Field/ w1 ^. A, Q$ _1 h
    Rational Field
    ; }  ?" n/ C+ eRational Field
    & `& h' t1 N0 ?Rational Field
    1 Y+ G2 {: z; A+ w# K" [, Yzeta_11, D5 x- W: v& S, r
    zeta_111
      m* x2 Q- `' e( Z8 {3 x6 Y123
    : h6 K) j; G# R77 a5 L; ^' u2 L, |5 ]
    7
    4 _$ d8 O3 @/ B$ `Permutation group acting on a set of cardinality 6# z  ]+ k2 i3 W9 R
    Order = 6 = 2 * 3
    " |) t4 v0 R& F$ v2 N. L6 L    (1, 2)(3, 5)(4, 6)
    / V" q' Y2 s2 K) e+ p3 E$ [- c: j+ {    (1, 3, 6, 2, 5, 4), [+ ]9 [$ ?4 U
    Mapping from: GrpPerm: $, Degree 6, Order 2 * 3 to Set of all automorphisms of ( r1 p: }1 Y1 `
    CC' N7 o8 w, A% d: @; z
    Composition of Mapping from: GrpPerm: $, Degree 6, Order 2 * 3 to GrpPerm: $, 8 v5 Q  ^: \  O0 x% `! h* }
    Degree 6, Order 2 * 3 and$ U4 p" Y% `+ U/ [
    Mapping from: GrpPerm: $, Degree 6, Order 2 * 3 to Set of all automorphisms of
    6 P; a! ~  ~1 tCC
    回复

    使用道具 举报

    lilianjie        

    43

    主题

    4

    听众

    204

    积分

    升级  52%

  • TA的每日心情
    开心
    2012-1-13 11:05
  • 签到天数: 15 天

    [LV.4]偶尔看看III

    本帖最后由 lilianjie 于 2012-1-10 17:41 编辑 " C3 Q- {/ K$ m# a5 \
    lilianjie 发表于 2012-1-9 20:44
    % J  H% D1 w8 z& t8 L) p- n分圆域:: W# y. v+ y4 m7 |. C" K% k2 d0 `
    C:=CyclotomicField(5);C;
    4 v0 X; f0 B" Q$ ^: n& SCyclotomicPolynomial(5);
      j& k; D9 |& |3 [9 Y, m0 E

    7 I( N9 C1 K& D$ K2 z分圆域:
    ( c2 C* Q  b8 `分圆域:123
    ( W; g/ R3 u; k0 R5 b. ~
    4 F) b1 y; L# YR.<x> = Q[]
    / @% ^) C, P6 x/ LF8 = factor(x^8 - 1)* z' i8 ?/ w: \; H2 g: ]
    F8
    1 h" d& p# W0 n# Z/ i7 M9 ?! @. K, R. _9 r
    (x - 1) * (x + 1) * (x^2 + 1) * (x^4 + 1)(x - 1) * (x + 1) * (x^2 + 1) * (x^4 + 1)   x. D# |  N9 p; g8 ~3 o% B9 P: n4 `

    7 V; U2 f3 h2 u& wQ<x> := QuadraticField(8);Q;  t; q$ T  H4 _3 d( ^
    C:=CyclotomicField(8);C;
    4 ~) m( Q& i) _' A. v* xFF:=CyclotomicPolynomial(8);FF;8 D1 N* T2 N5 I0 D) u. }

    0 B  {& }+ K. F" ?' L4 eF := QuadraticField(8);% c) n- b1 i6 r/ A7 G
    F;
    6 L4 E6 A4 y2 UD:=Factorization(FF) ;D;' m; u1 A( b5 |7 _2 z( y  P/ d
    Quadratic Field with defining polynomial $.1^2 - 2 over the Rational Field
    2 r' V- |) k% |6 U8 ICyclotomic Field of order 8 and degree 43 `7 U( k2 H0 _9 p
    $.1^4 + 1
    % K/ R. N* `' UQuadratic Field with defining polynomial $.1^2 - 2 over the Rational Field
    - {4 e6 y* s5 N/ O; P6 _[" |  E9 B( u% I( Q. z
        <$.1^4 + 1, 1>3 g) R/ @! ?* T3 [2 j
    ]
      Q6 j4 r% X1 c/ J! c) ?' [  \0 Z: r0 }; p
    R.<x> = QQ[]
      ]: Z  }6 N2 C& \  ~F6 = factor(x^6 - 1)
    2 C9 P9 e9 t# S) \# {) qF6. g% q  a( r8 I
    # e3 B, X/ i6 g* q' a$ ]
    (x - 1) * (x + 1) * (x^2 - x + 1) * (x^2 + x + 1)(x - 1) * (x + 1) * (x^2 - x + 1) * (x^2 + x + 1) * q1 o( _. [+ a( H
    5 o& U# o8 A1 v# h* L
    Q<x> := QuadraticField(6);Q;
    % {2 w0 f, d" G8 G: E6 rC:=CyclotomicField(6);C;
    ( Q9 {$ G  q& e2 Z( zFF:=CyclotomicPolynomial(6);FF;
    2 d9 a& T0 f, C( W5 y8 W
    9 o' {0 o4 Q3 ^F := QuadraticField(6);
    ' ]0 ^3 a' v7 j* IF;
      x4 e+ L' T9 f9 M' v. e, ?% PD:=Factorization(FF) ;D;; H9 Y: ^8 X% A: D4 s' N9 d
    Quadratic Field with defining polynomial $.1^2 - 6 over the Rational Field
    7 G+ z' A4 |- N( S( K" y- HCyclotomic Field of order 6 and degree 22 z. ~  g. Q* n( {- [
    $.1^2 - $.1 + 1
    % G. D7 l% H+ A: g, `* ^3 OQuadratic Field with defining polynomial $.1^2 - 6 over the Rational Field& C+ s0 |7 g, I  D/ U, s1 ]
    [! [% j  e, X1 x' E# n0 J
        <$.1^2 - $.1 + 1, 1>
    9 s3 Q4 M5 t8 N/ m) U; J( e4 b: r, r% ]]* H/ d: k8 g% D* M# a+ w

    $ t8 Q  z; Z8 D9 D# J/ BR.<x> = QQ[]4 r# n: I; S( b8 V+ \
    F5 = factor(x^10 - 1)
    & I& F* m2 J3 H6 M! m) BF5
    0 r/ s' P! S  B2 S1 `7 o2 k(x - 1) * (x + 1) * (x^4 - x^3 + x^2 - x + 1) * (x^4 + x^3 + x^2 + x +2 L* F3 i. K: V  |; G
    1)(x - 1) * (x + 1) * (x^4 - x^3 + x^2 - x + 1) * (x^4 + x^3 + x^2 + x + 1)
    ! g$ c) T& m. a% r, p2 p5 U6 U0 y' {. q
    Q<x> := QuadraticField(10);Q;% W& g5 ]2 A3 i9 j
    C:=CyclotomicField(10);C;
    , v2 @4 ]! m8 h  K3 v& ~FF:=CyclotomicPolynomial(10);FF;* D: x+ P- V. _

    ' ]; P6 E7 Y, H- \F := QuadraticField(10);% ~& C3 k; Y  U5 b2 ^2 R
    F;% a% D' h9 ^! F) b
    D:=Factorization(FF) ;D;
    8 U% X0 G$ f" sQuadratic Field with defining polynomial $.1^2 - 10 over the Rational Field
    - {% M4 b6 h0 x% ?" U8 P1 ?2 u8 ZCyclotomic Field of order 10 and degree 4
    8 N: s/ S6 e; o1 Z1 v$.1^4 - $.1^3 + $.1^2 - $.1 + 1
    2 t. ^8 i5 t5 o" G+ TQuadratic Field with defining polynomial $.1^2 - 10 over the Rational Field
    - R( F4 \' l4 L2 D# i[) a7 @; N3 j; ]4 N3 }; M
        <$.1^4 - $.1^3 + $.1^2 - $.1 + 1, 1>
    ( l8 m6 A# w. c# c' [) S8 C. A]

    c.JPG (217.37 KB, 下载次数: 182)

    c.JPG

    aaaa.JPG (98.21 KB, 下载次数: 172)

    aaaa.JPG

    aaa.JPG (157.27 KB, 下载次数: 170)

    aaa.JPG

    aa.JPG (126.91 KB, 下载次数: 175)

    aa.JPG

    a.JPG (242.91 KB, 下载次数: 193)

    a.JPG

    回复

    使用道具 举报

    15

    主题

    4

    听众

    113

    积分

    升级  6.5%

  • TA的每日心情
    开心
    2012-1-13 11:49
  • 签到天数: 9 天

    [LV.3]偶尔看看II

    回复

    使用道具 举报

    您需要登录后才可以回帖 登录 | 注册地址

    qq
    收缩
    • 电话咨询

    • 04714969085
    fastpost

    关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

    手机版|Archiver| |繁體中文 手机客户端  

    蒙公网安备 15010502000194号

    Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

    GMT+8, 2024-5-5 22:07 , Processed in 0.866761 second(s), 101 queries .

    回顶部