QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 2208|回复: 0
打印 上一主题 下一主题

解读3:探究费尔玛大定理的证明,不神秘很好懂,也很有趣

[复制链接]
字体大小: 正常 放大

18

主题

3

听众

394

积分

升级  31.33%

  • TA的每日心情
    开心
    2012-8-22 10:37
  • 签到天数: 92 天

    [LV.6]常住居民II

    跳转到指定楼层
    1#
    发表于 2012-2-24 21:01 |只看该作者 |倒序浏览
    |招呼Ta 关注Ta
    本帖最后由 chengenlin 于 2012-5-1 14:50 编辑 8 ?: c, H# s5 A6 {5 \( C8 r8 B

    3 G, a, T5 D+ |0 V; ^7 f     由上篇导读2,我们已证得5│z的这个结论(其中,记号5│z表示5能被z整除)。不过,要加以说明的是,我们指定的满足不定方程
    # H4 ~6 U$ R) a                                                                   x5+y5=z5                                                                            (7)
    # l  N6 C( x" ?5 A. R. ?各组解中的z必须是最小的。(为使大家便于理解,不妨举大家熟知的例子,如勾股定理的式子x2+y2=z2 的各组正整数解(3,4,5),(6,810)和(9,12,15)…………,或(7,24,25),(14,48,50),(21,72,75)……  。以上两组解中,其中第一组解(3,4,5)中的z=5是最小的。而另一组解(7,24,25)中的z=25是最小的。可以看出第一组解(3,4,5)是基础解,有了(3,4,5)的解,对x2+y2=z2 来说,就会有后面的6,810)和(9,12,15)…………等无数组正整数解,方法是将第一组(3,4,5)中的各数乘以2,就得到另一组解。以此类推。第二组解也是如此。由此,可以看出 (7)式如果有一组正整数的基础解,将会有无数组正整数解。由于已设定z是不定方程 x5+y5=z5 各组解中最小的z值,因此必然是x,y之间无公因数(用式子表示为(x,y)=1)。这是因为如果(x,y)=d>1的话,将(7)式两边同除以d5,得到d5分别被 x5和y5整除,记作d5│ x5,d5│ y5。因此,由(7)式就得到d5│z5 ,也即有d│z。由于z整除d得到的 z'的值比z还小,这与z是 各组解 中最小的z值发生矛盾。因此必有(x,y)=1  能成立。再来证明,还有(z,x)=(z,y)=1 的式子能成立。这是因为假 若(z,x)=m>1的话,就得到m│z 和m│x,把(7)式两边同除以m5,就得到m│y 。由已证得的 m│x和 m│y ,就得到(x,y)=m>1,这与已证得的(x,y)=1发生矛盾。也即由(7)式% K  x5 F) O. P) H" s$ C
    ,必有4 V# `% e- t: C5 J# i  s
                                                          (x,y)=(z,x)=(z,y)=1                                                                      (8)8 p5 X$ J) V% w, u
    能成立。以上已说明z是各组解中最小的z值,解读2中已证明了5│z,因此 z是5 的倍数,但不是5的平方的倍数,因此有2 A. ^+ N) T+ z/ K+ U) [  B) i; M
                                                           (5)2┥z (表示5的平方不能被z整除)                                                 (9)  J$ g; \+ x( f4 q' i
         以下,我们将由5│z出发,从后面推导得到的其它式子来证得(5)2能被z整除。应当说这真是一个奇迹,证明完后我们将说明为什么会有此奇迹发生。由z5=x5+y5=(x+y)5-5xy(x+y)3+5x2y2(x+y),将其等式右边提取公因式5(x+y),得到
    % O; p- d8 c. `# C! e! V3 w                                                          z5=5(x+y)(e(x+y)4-xy(x+y)2  +x2y2)(其中的 e=5分之1 )    (10); c* j5 }: q2 ?: w
    由 于5│  t 在导读1中已被证明 ,即有5│(x+y-z) 。由 证得5│z和5│(x+y-z) ,就得到 5│(x+y)。由于e=5分之1  ,因此 e(x+y)4为正整数。下面 ,将证明
    : e9 q# J: V# |# P) @1 L, |                                                         ( 5(x+y),e(x+y)4-xy(x+y)2+x2y2  )=1                                  (11)  
    8 r+ q# b+ \: O4 }$ x& }     先引入以下几个引理:+ y/ S+ Y/ h& ]# ^: ]
         引理1:设a,b为正整数,且a>b。若(a,b)=1,则(a+b,b)=1和(a-b,b)=1。证明:假设(a+b,b)=d>1,此时存在正整数u1和u2, 使得a+b=du1和b=du2(其中(u1,u2)=1)。因此可求得a=d(u1-u2),由于b=du2,故得到(a ,b)=d>1,这与已知(a,b)=1相矛盾,故有(a+b,b)=1。同理可证(a-b,b)=1。     ( 举例来说,若(2,3)=1,就有(2,2+3)=1)7 M8 V* t2 n$ X. _3 {
         引理2:设a,b,c和k为正整数。若c│a且(a,b)=1 , 则有(c,b)=1(符号c│a,表示c能被a整除)。证明:因为c│a,这时存在一个正整数k,使得a=kc能成立。将a=kc代入(a,b)=1中,得(kc,b)=1。由(kc,b)=1,表示正整数k和c的乘积与正整数b之间无公因数,由此,那么必定得到c与b无公因数、k与b也无公因数,否则的话就有(kc,b)= d>1与以上得到的(kc,b)=1相矛盾。因此,当c│a和(a,b)=1时 , 必有(c,b)=1。   ( 举例来说,若3│6且(6,7)=1 ,则有(3,7)=1)
    , u4 U# R8 y( K4 G5 j      引理3:设a,b,c和为正整数,若(a,b)=(a,c)=1,则(a,bc)=1。证明:因为(a,b)=(a,c)=1时,表明a和b、c之间都无公因数,则a和bc之间也一定无公因数。不然的话由(a,bc)=d>1,就有(a,b)=d'>1或(a,c)=d">1能成立,但这与已知(a,b)=(a,c)=1发生矛盾。因此,当(a,b)=(a,c)=1时,有(a,bc)=1。   ( 举例来说,若(2,3)=(2,5)=1,则有(2,15)=1)
    - E2 H4 a" B" A# q3 S    引理4:设a,b和n为正整数,若(a,b)=1,则有(a , b的n次方)=1。证明:因为(a,b)=1,表明a和b之间无公因数,则a和b的n次方之间也一定无公因数。不然的话(a ,b的n次方)=d>1,就要得到(a,b)=d'>1,这与已知(a,b)=1发生矛盾。故当(a,b)=1时,必有(a ,b的n次方)=1。            ( 举例来说,若(2,3)=1,则一定有(2,3的任何次方)=1)
    / Y; r2 F% o4 S# }    现在,开始证明(11)式,分两步走。先证( x+y,e(x+y)4-xy(x+y)2+x2y2  )=1  ,由于(8)式有(x,y)=1,可以证得(x+y,x)=1和( x+y,Y)=1(参引理1)。由此,可以证得(x+y,xy)=1(参 引理3)。再由(x+y,xy)=1可以证得(x+y,& E, n/ v+ A- P$ y( p& F. F
    x2y2  )=1 (参 引理4)。接着,由( x+y)│(e(x+y)4-xy(x+y)2 )和(x+y,x2y2)=1,就可证得( x+y,e(x+y)4-xy(x+y)2+x2y2  )=1 (参引理2)。由于5│( x+y),和( x+y,e(x+y)4-xy(x+y)2+x2y2 )=1,就能证得( 5,e(x+y)4-xy(x+y)2+x2y2 )=1成立(参引理2)。最后,由已证得的( 5,e(x+y)4-xy(x+y)2+x2y2 )=1和( x+y,e(x+y)4-xy(x+y)2+x2y2 )=1,就证得(( 5(x+y),e(x+y)4-xy(x+y)2+x2y2  )=1(参 引理3),也即(11)式被证明成立。由(10)和(11)式的成立,知必定存在正整数d和s,使得 5(x+y)=d5, 和e(x+y)4-xy(x+y)2+x2y2 =s5 能成立。也即有  Q8 I( p" q6 G0 y' L* h+ {4 q
                                                                          x+y=e d5    (其中e=5分之1 )                                      (12)
    + b6 I, j2 {( h7 a. @1 @: d能成立。把  x5+y5=z5 变形为  x5=z5 -  y5。因x5=z5 -  y5 =(z-y)5  +5zy(z-y)3 +5z2 y2 (z-y)=(z-y)((z-y)4  +- z* u4 b# h; }# J
    5z y(z-y)2 +5z2 y2 ),也即有
    4 W. S0 z7 R: k/ a# p                                                                    x5=(z-y)((z-y)4  + 5z y(z-y)2 +5z2 y2 )                    (13); D! H0 P4 S+ r) a8 C4 e4 P
        由于,由(8)式有(z,x)=1。在本文的开头,表明在导读2已证得5│z  。由  5│z 和 (z,x)=1,就能证得(5,x)=1
    ; b2 W5 l/ @! e+ f+ g(参 引理2)。由(x,5)=1就证得(x 5 ,5)=1(参引理4)。由(x 5 ,5)=1和(13)式,就证得((z-y)((z-y)4  + 5z y(z-y)2 +5z2 y2  ,5)=1。由此式,就证得(z-y,5)=1  。接着,再由(8)式(z,y)=1 ,能证得(z-y ,z)=(z-y,y)=1。(参引理1)。再由此式,就证得(z-y,zy)=1(参引理3)。接着,由(z-y,zy)=1,就证得(z-y , z 2y 2)=1(参引理4)。由已证得的(z-y,5)=1 和(z-y , z 2y 2)=1就证得(z-y , 5 z 2 y 2)=1(参引理3)。由于(z-y)│((z-y)4  + 5z y(z-y)2 )和(z-y , 5 z 2 y 2)=1,就能证得% G# r  V0 w6 |; X* i
                                                         (z-y  ,(z-y)4  + 5z y(z-y)2 +5z2 y2 )=1(参引理2)                (14)5 n  R3 K" E2 d# K: g3 h# B
       由(13)和(14) 式,知存在正整数m和v,使得z-y=m5 和(z-y)4  + 5z y(z-y)2 +5z2 y2 =v5能成立。即有, o( l3 k) N( U' g
                                                                    z-y=m5                                                                                  (15). p. J8 A, F3 L- s5 v. N) T* z
    成立。再将 x5+y5=z5 变形为 y5=z5 -x5。由y5=z5 -x5,同理,可以证得2 F- K8 i2 a; J2 E8 Z0 _" f
                                                                     z-x=p5  (其中p为 正整数)                                                    (16)% e+ I0 `6 \- Z$ h9 Y: I
        把(12),(15)和(16)三个式子相加,得到
    * o" g' d% y9 m; `  w                                                       2z=e d5 +(  m5 + p5 )    (其中e=5分之1 )                                       (17)# {3 A+ Z, ^% W* y: w
        把(17)式两边同除以5。由于5│z,因此5│2z能成立,再由(12)式  x+y=e d5    (其中e=5分之1 ),可得到5│d,因此 5│e d5 也 能成立。由等式的性质,得到
    1 N) ?4 L1 M, q2 Y1 }) m                                                        5│(  m5 + p5 )                                                                                 (18)
    - j! j% l) d) R3 e0 p9 x: L能成立。将 m5 + p5 展开为
    + z3 d; E& H) }( M: L: T                                                      m5 + p5 =(m+p) 5-5mp(m+p)3+5m2p2(m+p)                                 (19)
    2 r: b) q8 d4 n- R, ?将此式两边同除以5,因此得到" w1 A3 }" ?4 }  k% v7 _9 y9 V# l4 M
                                                            5│(m+p) 5-5mp(m+p)3+5m2p2(m+p)                                           (20)% e- L  a- H( Q
        由(19)式,可以看到 它的 右边 3项中有2项的系数是5的倍数。因此,由整除的性质,可以得到另一项 (m+p) 5也能被5整除,也即有5│(m+p) 5。由于5是其素数,且m+p为正整数,因此当5│(m+p) 5时,m+p和5只存在一种关系,就是9 y( W* t: U. B& V, j- Q
    5│(m+p)。由5│(m+p),可以看出(5)2能被(m+p) 5 整除,另两项都含因式5(m+p) 因此也能被(5)2整除。因此,得到( l' f$ H$ ^/ I/ v1 }% }: V4 J" w
                                                           (5)2│(m+p) 5-5mp(m+p)3+5m2p2(m+p)                                  (21)
    ) T5 M+ d" P+ R: ^5 g+ H9 X    将(19)和(21)式对照,就得到9 o4 G& o5 R7 m+ j9 ?
                                                              (5)2│( m5 + p5 )(这里记号(5)2是表示5的平方)                 (22)
    ( S, B* F5 v" x: G   由(17)式,其中的项e d5 由于e=5分之1 ,得知 5│d,因而(5)2  │ e d5 能成立。由(5)2  │ e d5 ,和(22)式6 z1 c% Y" P% q' r0 ?1 @
    (5)2│( m5 + p5 )及(17)式,可以证得(5)2│ 2z。由(5)2│ 2z,及(5)2与2无公因数,因此必有# P) I6 Z! z  j7 s
                                                                (5)2│ z                                                                                     (23)8 o, \1 n' G9 c
        明显看出(23)与(9)式发生矛盾,由此可以看出假设不定方程 x5+y5=z5 有正整数解不能成立。
    ( a. T% c" y: j# j1 G" w' f& t% R3 h
    + B2 ?+ Q; |* ?% M6 k$ f9 i
      G/ n. L5 H) j# [   说明:我用完全相同的原理来证得n为一切奇素数时,证得费尔马大定理成立。再结合当n=4时xn+yn=zn没有正整数解已被人们得到证明成立。和我国著明的数学家陈景润在所著的《初等数论》的《费尔马问题的介绍》中,表明了“当n=4时和n为一切奇素数时,费尔马大定理成立。就可以归纳得出费尔马大定理成立,也即证得当n取一切大于2的整数时,不定方程xn+yn=zn没有正整数解成立。
    , z3 T1 F7 v* ?. L( G" @4 l- ]" W( G( L- K
          证明结束后进行回顾和小结:本文中突出抓住不定方程 x5+y5=z5 指数5 与其变量x,y和z之间的关系,进行深入分析。有趣的是,当证明进行到(20)式5│(m+p) 5-5mp(m+p)3+5m2p2(m+p) 后,为什么会出现仅由此式本身,就又能证得(21)式的(5)2│(m+p) 5-5mp(m+p)3+5m2p2(m+p)能成立呢?按道理这绝对是违反常规的,而正是这个奇怪的现象,却导致后面我们能证明成功。对这个奇怪的现象通过冷静地思考就会发现,如果m和p不全是正整数就不会发生以上矛盾了,事实上,由于最终证明了不定方程没有正整数解,x,y和z不可能全是正整数,因此由(12),(15)和(16)式知m和p就不可能都是正整数。这就回答了以上为什么会出现奇怪的现象。也就是说,当m和p不全是正整数时(20)式本身就不能成立的,当然更不会有(21)式成立的结论,因而也就不会发生后面的矛盾了。
    : L& }; o3 a6 y5 ~3 J! E; B* O! U. d6 x0 b% `' C5 V- ^1 f7 X9 @
                   下文 解读4,经行全面分析,应当更有趣。                              
    9 {- D) w) I6 P: K% n4 l
    2 N; z0 I. K& u6 i# g
    & P9 K0 |: k' }# c% e* A( ]& j# K4 N) ^% \
    % A6 P" }8 I$ N0 E8 |
    ! x# U" H5 Z  y/ S9 h" x0 @/ \! `( \

    5 Z7 m2 @+ D6 ^7 {7 S+ B: x6 h                                                                             Y/ q3 _/ U8 J) U+ v
    : ]# }! F2 c9 H( a  o  `

    ) G1 |* K) m. p1 d5 Y: l
    ; J4 N4 ^# }5 ~$ _
    * ^9 V) D& N: v) q  g8 g                                                                             
    zan
    转播转播0 分享淘帖0 分享分享0 收藏收藏0 支持支持0 反对反对0 微信微信
    您需要登录后才可以回帖 登录 | 注册地址

    qq
    收缩
    • 电话咨询

    • 04714969085
    fastpost

    关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

    手机版|Archiver| |繁體中文 手机客户端  

    蒙公网安备 15010502000194号

    Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

    GMT+8, 2024-5-7 00:27 , Processed in 0.462802 second(s), 50 queries .

    回顶部