数学专业英语-Notations and Abbreviations (I) Learn to understand
9 J. `; X: |; Q: n+ V, S* j ' q1 I- z* o L3 _4 ]
7 X' N P- i1 _! [# F$ _ : Q# p( c2 O! e5 t: A; b4 V
* J% T9 V! t( B+ K- WN set of natural numbers
5 }/ q* z6 H+ F8 i" j' Z; z4 @! K4 ]5 c6 L
$ j0 C+ w( V1 G/ e" z& |. c
' F1 Z2 I) o2 n, F2 Q' a Z set of integers
* D& F# [4 p* G1 L" N, }% Q
2 i3 z0 e O0 J( u
/ ?# p$ R+ x; O' y2 q R set of real numbers
# y5 B S9 R# U2 j4 a9 ^; ^; F" o6 A3 l$ Y, q# a( j, A
7 g# D/ ]7 K+ Q+ j$ c0 V
C set of complex numbers 5 I) [* P) }/ a6 R4 y0 | b
8 ~5 O9 r4 ?! E/ S( \& J8 F " Q* m4 Z8 b9 S9 H% U
+ plus; positive
7 r* c: b( b* Z& o
& h9 O3 E: ]7 t- U" e0 n
3 d( J" C# i, c. N& {2 o - minus; negative
6 B6 l1 P Q; x- B/ J
/ ?: n3 |& c m& W2 |7 U$ Q; T
: Q# l: f; S. d' L% c × multiplied by; times
# J4 s2 z" Y' X* O, D, s' L! k
" u' x( C0 B' t
8 i0 I I4 ?7 g1 G5 q: E ÷ divided by ( b% Q& Z/ g: D; U; { V& |, q
. |/ Z- x6 [% H s5 v0 }3 X- I
. U2 G/ J+ z" [* I& N+ Z7 f = equals; is equal to
- m/ {' T! p' s2 }3 `1 L z/ Q2 O- [4 n2 Z. _1 n- W0 q
. P+ I/ ]- Q4 {$ F2 ^$ k( I
≡ identically equal to 0 W/ e- e" o( Z3 C; z% K5 M
: m0 U- V6 t% Z$ a3 q
7 K* {0 S8 H, {4 O
≈,≌ approximately equal to
4 B1 y. _; l g
. A5 k( M+ H( I z9 B6 | 2 ~4 L7 q! K" F* [" z+ L" p! J) x* D# b- f
> greater than 3 j& Z: {7 A4 n3 x/ u- O
0 [* x8 @# Y& j5 a( l& Y4 z6 N 2 U* J/ m) o# n
≥ greater than or equal to ' A6 F8 A5 @7 }9 j- J4 s
3 ]" ^7 z J+ e% h
, ] O! a* s* ^1 z7 X) }' q2 p& _ < less than 2 B( P9 I$ c/ x6 L y$ b; g
- c; c4 k8 e2 c Z: D0 A7 j * m* q# b& s$ C$ N) a5 k
≤ less than or equal to
/ T I6 l2 s7 _9 T- C, T
( u+ w. o# Q* E5 @% Y+ o* r % a" P, }6 G e
》 much greater than
4 }3 j7 g) L/ A7 P2 `4 d6 y+ q* [- m8 c4 Y8 r: x2 ?
. f, x- y4 t$ P1 |$ Q) w* `- t+ P* I 《 much less than
X5 B3 f3 a% m6 ^. J+ l' I3 t/ R2 l) y. m7 I
0 |3 i: w4 V: w, R, b square root
. P1 j/ d: y9 d# j/ w* z% Q6 u$ ~9 d! K
- x" c( `: j7 G0 }# j1 W9 t+ ^
cube root
1 R- N( W* {& m: G$ t" }! N8 P& L J3 J! P2 e5 [, K8 O$ l+ T
3 T1 v; l4 ?, F9 ]3 r: A& S
nth root
" s4 M5 ?" `* Y) A
% F+ j6 [9 H! Z) H1 O; K
/ `7 I# [2 x+ A \ │a│ absolute value of a ' k. M$ `3 n; H! Y0 M/ l1 C1 C/ O
5 A& { X$ Z5 _7 x7 a4 u; G
+ i* H2 D' ]" \) ? G( U n! n factorial
5 P' X# X& _; v# F2 E
" q# i8 D4 b2 \+ x. m ! ^* N& a; ~# |
a to the power n ; the nth power of a 0 z# J( d5 `4 `8 s3 s
2 T) h6 C$ u0 u8 K, l! D
1 _4 S5 v( ?7 F7 o0 @' @2 q. P" ~ [a] the greatest integer≤a
+ H% V7 h" ?' C+ ~4 J
/ L, r- Y- r$ _ W / Y$ a6 O3 r2 q3 A2 a/ i& `
the reciprocal of a % W- G1 \, Y. ^" Z
: K% ^% `8 S* u) @% k
2 T9 A% b( U* n7 e( S( U$ ^, h ) c: t) |! b& v9 K K
* y4 F! o4 d0 B9 d0 G
+ \3 c& U1 h. N' G. E Let A, B be sets
6 D4 ]6 m) B7 e; J, E
( W; W5 p$ i1 ?. W; T9 h( A : E, ]! I+ p/ J' C3 D2 ~
∈ belongs to ; be a member of " y( B% B6 d0 f' M& G+ A
- w: n, Q b2 A6 t' Q5 Q% J/ y u
8 G0 w y" d, J
not belongs to
5 z3 v6 G& q0 O
( J) [4 c9 B* y+ s0 p- [% Z% _
' v$ [" d R5 ]' K j/ F x∈A x os amember of A
/ N) N; z/ {4 N+ d" s, C
6 A, \1 B! n4 Y, F6 l$ p v% ?; g+ j1 W1 J0 _* e1 [" p
∪ union . }7 Z% z+ Q( l7 ?1 T5 y
4 r2 z5 @6 I7 c) k. D3 B9 H - o$ p( p) X0 u+ _( g. z# j
A∪B A union B 0 N/ f% Z- h- ~- y- h' Q9 l9 V
9 H) N3 L; A, e& V4 G& X6 M
. L. l0 q* O" D5 v ∩ intersection
/ [5 i, i' O# k
! U# b* {2 g" L1 d ' n6 R3 r) L: M- w E) n5 C
A∩B A intersection B - o, \/ j& o0 t. I
$ |0 {, X! e Q7 y$ L5 Y7 Q: J
* M: v0 u) h5 w: x A B A is a subset of B;A is contained in B
, q5 O* m" h, n! k0 r& z8 K9 M6 E
, K4 {& ~! ]8 u" a
/ u+ u( n& j8 G A B A contains B 5 s1 n" z! r2 O; |; j6 s! V- X* R- f2 o
7 ?6 L# M, w5 j
% Q1 r+ O* t; h V" t; a/ ] complement of A
0 h8 y" \- Z& M7 D z$ `6 P
* N5 J( K. F! S: h7 l5 g" [4 n
) J' s( J# `9 Y' w( T the closure of A 6 O7 G0 T& L0 h
9 j. Z$ K$ r" u' d
4 A/ X" x6 C- ^7 o2 u3 d empty set
2 Y6 P. a4 T: ^3 _4 Y4 ]8 L
# ?1 {" }& X5 U. y ; a X* ?7 v; g$ A1 m8 n1 y
( ) i=1,2,…,r j=1,2,…,s r-by-s(r×s)matrix
8 d' F1 k6 w/ b0 q
9 C0 @" C; |8 ] * M' Y1 ]( A: M- d5 P
│ │I,j=1,2,…,n determinant of order n O4 r' [9 o7 A% ^
3 y5 P! r8 M _: @- b8 N1 u9 T
& [* ]7 i2 x" {2 t det( ) the determinant of the matrix ( ) A5 q g/ `# M. Z/ _5 @+ j5 v
/ }& u2 ?1 M1 O5 b& l9 N' { ! }; E! U) W x4 |) u- ^4 o
vector F / J2 w3 V! l; \6 F7 O
+ H( B l) t9 b
* c0 X1 ]3 N0 E$ W+ k
x=( , ,…, ) x is an n-tuple of ; l0 z/ S5 F; u
/ b+ K5 A6 d i5 } e4 k
( P* y1 ~9 {9 Y- q b ‖‖ the norm of …
: [- K2 _7 u; e- M& i& Y; t' e& I; a$ Q) ]
# k: `1 M! y7 t& n. T5 }% T! O6 \( E% J ‖ parallel to 9 T* s( b. E4 `* m+ }( P
+ k0 v; ]0 T3 k9 j0 Q- f' m4 ~
* I/ S8 ?/ G9 h9 Z ┴ perpendicular to
/ d# i0 M' J% h: [6 A7 ~4 b
1 b0 S( h' k% x S! u8 w0 O 3 B% @" K- C6 ~$ W, |7 f
the exponential function of x
- W' q) k$ G9 `9 Z
) b1 W n$ E5 W: K$ f
" L0 [. z8 `, V7 C6 X lin x the logarithmic function of x ( F: |% d) w# N% c
; N/ R; ]( w9 e2 k! P5 q : J7 W- m8 d4 d* P/ N3 |' W
sie sine
# z3 K0 H( L: j) C1 X
8 h% W6 A7 B( Z0 Z) a. V
# `- n# _( U* R1 c8 X! c cos cosine % \' H( G* B! {* ~0 E- g9 U- g" C
1 {/ n4 P( r/ c3 J) I " L- h ~! K. l- J+ p' m
tan tangent " J& k/ a* A% l3 i* ~; `1 H
% u6 N6 p8 J; |" B0 w
! R( n) r7 n# m" n+ v+ G& w
sinh hyperbolic sine ! j, Y% I% g2 B) Q5 x8 Z
' v; I0 E& K: W* H1 K
# k7 \: ]8 k# t9 m9 w cosh hyperbolic cosine 9 m7 V$ R9 B8 r
$ n; k, t! |7 A3 Q
" [9 x% u- b' x the inverse of f
" y0 x7 \* Q- \2 r* ^6 l. F
0 ^& W5 n5 J( Z! W
7 L- B, i. g2 E! T" O: i f is the composite or the composition of u and v 5 v. h3 d( h" f# _3 c) {8 d
$ z. {: v( N# `6 T8 c4 w6 c. b; R
' j* c# C0 i# R) ^ n! v
the limit of …as n approaches ∞(as x approaches )
( J' C+ G. {) h6 ~; b* }
$ s5 I* }! K2 ~- Q l$ d 2 m6 \+ R- ~# p3 u! w! ?
x a x approaches a
- h# Y- I, z& [0 }$ U. V- x4 g2 H! ]4 Z/ @+ q9 N1 a6 e5 {
( m6 S. n9 x2 b# F , the differential coefficient of y; the 1st derivative of y " Q% W/ W2 v$ W% w& {4 L( }
5 r+ A8 I& ~% f6 }6 j- K3 K
J' Z% H! |2 l5 a
, the nth derivative of y - f$ O1 y% k0 k3 ^& P6 Q4 `7 ?
7 b1 y' g; l E& T 2 D5 o! b% W$ w( G: Y" D
the partial derivative of f with respect to x 1 O2 ~- Q* b z C3 G
8 s( L; {' f( J9 D : X% X5 U: l7 K( p
the partial derivative of f with respect to y ' C N$ F# t) B% s! g
8 ?' Q. a7 Z* `
1 k Z6 ]9 [* T( @6 a0 K% v the indefinite integral of f
% N, W" u/ B, G- Y4 g6 X J+ q
+ e! G6 J9 m1 \
3 _ ^( l, n4 \3 \" G3 E the definite integral of f between a and b (from a to b) . h: ^( B4 u: s6 i3 Y9 u
) c1 D% s N% c8 q 3 V' S' _0 C; b+ X% X9 {" z
the increment of x ( y& @& m1 v. ^$ }
- X- j5 W; E5 w, \' y1 R5 A
$ S2 J# d, i4 r% H9 g
differential x 7 ~7 b) R; k5 F! P# `! e+ }" h
5 u8 Q* w' \' e- X4 B
) ?8 y9 H9 F9 U8 u. v6 O( o$ k7 v
summation of …the sum of the terms indicated . k4 ^ [# s' B) t3 h
; L' i4 x8 }3 i
$ A5 j1 O9 [( i, W
∏ the product of the terms indicated + F1 I) e! B- L+ B) G
# K6 t' b0 S; _7 o0 E# M) \: Y% u# z
9 x9 `8 Z7 W8 [8 M( Z9 u0 K2 s8 ` => implies 5 W# P: s6 n" B7 `9 d F; F
9 F3 S* v' ~- m9 w5 t) {5 D
0 t% }1 H) e* M is equivalent to
$ k% D J" p7 k" _" a/ I, s9 _$ L9 j4 j. H; ?. ?, j# D
. V* [8 D) I& S
( ) round brackets; parantheses
0 W/ v+ c& f/ i& h. p
, Q- I( k1 G2 o; T) C* v
1 Y. o9 s) {/ f- E6 O, c [ ] square brackets
' E! x# I1 J) @6 l( C1 V
9 S5 N1 j. t9 G
& o8 J ~2 i2 D6 a { } braces
! p9 H8 ~% T) c1 v9 M/ H9 `% B/ a3 {% T( T
Z( W% q: y& @2 z( }
& X# t6 `2 O0 ~! e; k! q
) M) A& D5 n8 }
0 M4 y5 {* f9 J 7 V9 Y' w. T4 z# x
|