|
数学专业英语-Notations and Abbreviations (I) Learn to understand$ a; B) J. T3 u8 j
B5 Y0 J# p8 b i2 ~( M0 M
4 Y8 K s& X( q) Y: ` N 5 k# w; X4 g* T! N. r8 P
0 F2 L* s6 D# y5 ?N set of natural numbers : W+ T' `# o, R& W% j8 h4 h
, u& s$ _, o, t5 f& h$ d
2 [ t. L; x8 e* S
3 N8 s( D) I4 i" K1 w6 }. w! b; |* m
Z set of integers 0 q" h% A$ c7 I
0 M9 C2 n# S! ?
2 R* y: Y7 S3 I! M( R7 A R set of real numbers ! D- Q+ Q8 P7 V) k! Q7 P% p
4 O2 C$ r, h" ^
2 x! ^; G, D9 D+ J$ j$ }
C set of complex numbers / t! h* ?! X3 F1 d! q, R
( `' R, n5 v, g: Q8 O- U
: D. l8 G9 {& D: g* | + plus; positive
# e6 ^7 j' V; g- S( H7 s1 v. C7 B. H6 c$ Q
# N$ S+ {9 }* f0 v$ }9 X% p - minus; negative
/ a; U) n/ B2 I; K# E
* J( a5 Z! E' N8 e/ ? " G- S: O% }+ G, M6 F; s
× multiplied by; times
6 o4 Y# ?6 q0 N5 ~, Y* V, P# S5 {5 B& ^& Z
6 B3 M+ W6 z3 k& c/ @: S1 N ÷ divided by
- I; @; X# k4 A2 T3 I5 L n& a' n. u
+ k) ]; f8 R6 m
= equals; is equal to
8 ?2 W& K9 L. L7 Y4 J/ J6 Q6 F; {4 \) R& x3 Q5 S1 d
8 a0 i1 c# R0 B r6 r% C) l
≡ identically equal to
* |5 J. y2 j" m6 `5 _9 O: p3 h4 r* J7 l' C. k
/ [ k1 G( j0 q) c, M
≈,≌ approximately equal to q5 \+ o# K7 {" ]9 Z9 A
# a8 b: Y9 W6 N- ]
3 e; Y1 A6 C1 k" r! n( { > greater than 2 H, @ E; c, [' T/ B; _0 z
' f/ E: r' }) T/ T+ s
, \2 q% g: @8 m! U7 \4 h0 ~' {
≥ greater than or equal to
3 b5 s& ?! k) H$ u* l }5 S2 S) Q$ D2 C* Q( A
1 N3 R% X( u* d1 H- ~% e < less than , G! p. d9 R: [
! G4 y% X7 y7 `: _" k 1 H3 V6 [0 z* T
≤ less than or equal to
; ?; u7 ^# e6 [# y
. ]# V' I( O6 U; T2 | _8 s . W9 w; m8 \5 Q6 j$ `( b% M1 {, c
》 much greater than $ D- o) M# U* o0 T4 n* g
8 B/ S- g' Q7 X
f* l) c9 w2 ]! b, V4 R% I 《 much less than
2 ~. I& i( U* `2 ~. Q& z7 u% J a3 x
- R ?$ F& s5 l8 ^ " [1 k7 J4 b2 M0 f* o3 r) D
square root
0 d# ?5 O) a1 o/ x0 ^( N- u; L, v' q- P1 V* F, k" G( u
/ c5 s# j2 q0 }9 |2 m6 ^
cube root 4 f5 w- g" B: q
) k3 \/ B; f: U) g" n: X2 l
1 i) n: T5 m8 O7 k nth root . v& u- @* T: c' n
+ C: C, j5 S! v7 ` ( `6 v/ E, b1 c
│a│ absolute value of a [, |9 v" X# K, h
0 \9 t- K# w) _" T# a
9 l5 n8 X8 e+ b! x# n) ` n! n factorial
3 Q$ C- p3 Z; _* P
& d3 ~$ L" K( C 3 `( B3 f0 G! Z2 ?
a to the power n ; the nth power of a 1 W6 i7 L2 A# n$ h* l& v
) D/ F9 S: U5 Y. p6 i* C ( Q& L7 P) k1 j. R
[a] the greatest integer≤a
* w+ p: ]& Z/ j: _3 n' U
$ c5 Q1 L) q: k' a 0 O1 Z/ E* s8 L
the reciprocal of a / [' o" T/ r% A( n
! Y# X; v% q+ P9 E6 v
0 K5 m6 K: l) t1 e, J8 V
/ R. C1 Q. [% j+ R/ E+ E! i( F, t# a7 l. g2 Y$ M: l) `
# |$ z$ s% w4 D8 e o7 u
Let A, B be sets + [$ y; ^& M$ H/ @$ J* @
# E- _5 O" s. q* _# `6 P / ]! Y: A7 _$ m" w/ w: g
∈ belongs to ; be a member of
9 w0 |3 q, n+ |6 G6 S" s
% F! P! S( C4 g+ K- x: J1 t
: }0 J6 [0 J( R/ Y& T not belongs to & p- L7 P* d' {, K5 z5 K
/ Q; j" v& X3 N% f' M0 f6 H
% n' {, v4 M( \
x∈A x os amember of A * q$ _8 Z$ Q& Z& q
4 _. |! J9 b4 c q
' u- ^/ M2 x6 I9 n+ s- h j7 u9 v0 r ∪ union 7 @4 |* E0 r$ P) k/ f) T
$ p) a' D( `& K" _+ z' j9 H
, J9 q! h1 s2 }( r$ t
A∪B A union B
( y' a, |) M0 P9 q
$ z2 z0 f5 ?' O/ H2 _; q$ f- S
$ ^' p4 d& {) w$ X- I U) [ ∩ intersection
0 T7 F/ s1 v, O0 M+ A7 {8 p/ \ x8 R5 k0 T! w l8 n+ d7 U: l
4 w x( E( m% z) L# e
A∩B A intersection B
2 x+ b, R- X2 b* V2 C8 H7 E; {; j
8 j* q2 ~# e1 q3 Q- A6 }. ]6 n 8 w2 a6 H/ D* Y4 U
A B A is a subset of B;A is contained in B $ O" y) o; Q+ ?7 ?: O
% J' i# H: E/ Z0 Q% R' R B% X0 |: D" }1 b- n
A B A contains B
& |# K! w2 B6 R( l. i. N6 t/ U3 |3 U3 x1 W. h/ k4 f( v
Z! R0 _5 z) r* u. s complement of A 3 G( F+ r4 g! n! C% ] U Y8 |' H6 p
& u5 I8 }3 O) {' o2 ^* P: \
% Q7 N( d7 A4 Q. k7 G2 I/ k
the closure of A
. @* b. `+ c1 {$ s x I+ M' u- i `% {6 v- ?; W8 J1 _
( W/ W4 x* V: v- k empty set
5 F2 S* u) M2 X9 i! Y
. j3 f# K0 u' ]7 |: I1 c$ v & y' f1 M* G% R \' d( V
( ) i=1,2,…,r j=1,2,…,s r-by-s(r×s)matrix & Z: N8 L i( H& R3 a
6 u+ f2 W0 t4 V$ E0 R$ m( n- O
/ l. U( r: \9 N( C" t │ │I,j=1,2,…,n determinant of order n
2 @/ ?9 l8 o1 _6 \
6 z( D# u$ _: F8 ^ ! `" P8 `% r: L4 P7 W
det( ) the determinant of the matrix ( ) ' Q$ l& g8 ^% ?# H
& [9 ?# M: d8 `! w4 t
9 M6 U" T s5 |$ j" l# d vector F
6 v8 r& i. l6 U" B
. H$ A8 N$ z$ q- w* {
1 q# a R+ ~* z A! r6 Y x=( , ,…, ) x is an n-tuple of
% j' |5 r# u7 \6 U
: j$ S; Z G1 s5 } ! W# ?) E+ M, d9 ]: e$ R1 B
‖‖ the norm of …
# M; K! O0 S8 y! T5 p9 p7 `$ i* U7 i; o& Y
$ h" w: w. p% O$ W' \/ B* N2 ^
‖ parallel to
5 c$ j! E. c0 T6 d4 I# w9 O
! q2 x% h' m3 G8 ]/ p8 Y7 K1 z
% H8 F+ F, n4 c' W+ n ┴ perpendicular to
1 A3 y6 q/ s6 o4 w- H9 q0 @ q0 l) E2 n' z& F9 _
1 e+ H0 o" v' i8 ?4 W the exponential function of x " {6 Y% b2 \1 `, m% _4 x
6 y. G' V+ d( x1 r' B7 ~- Q
6 }; Q+ G3 }% k0 ^1 P lin x the logarithmic function of x
# |) \, w) x% [7 c" S. u; u& H }! h# l! I- k- J9 `0 Y
1 H6 }# c% j% E9 a
sie sine
! ]+ i L" M. j0 |: |* s( O; p2 [" A( m3 J2 Y6 d
! |, k+ k" P1 d! t5 d cos cosine 2 _9 g# |9 ?. h' Y$ X5 R
" q7 _5 y) c. k% I: q
. a- Q3 _9 `! x6 ?6 }2 p tan tangent
: p: X) U" [- }( Z
1 n* F6 t3 @) b! ^1 A& {1 b
6 _0 t) D+ V3 Z1 `' ?/ P/ L, |" \" U7 z sinh hyperbolic sine 4 E4 i1 C% g; ~2 t: D
$ L/ w; F5 P4 ^4 b
/ I% g. q* ^9 J, k2 n8 B6 c
cosh hyperbolic cosine
: x: O! R; ~- K' G! l0 ]: x' {+ _
8 `; ]/ s1 j- l7 l 0 f5 z) _5 O! s6 p
the inverse of f 7 \3 X% H+ y: O& a7 z
. F- x0 h6 z- o7 n% n' b
/ [; C, m) i0 W& T f is the composite or the composition of u and v
4 Q1 c, n. Z9 ?7 L
+ m/ T% ~' _5 _, s l
: R% P) L! L! ?. ]8 ?6 H the limit of …as n approaches ∞(as x approaches )
4 k! E( i3 Y4 M8 z; k2 e) O/ t; Q. @8 ~2 H( E# H
U! N1 w) T3 A# n3 w. H+ J" } x a x approaches a / f+ j+ n- }+ q5 v8 M( ?
( C i% o& P5 J
5 j2 d# y* V* ~0 H" x# b , the differential coefficient of y; the 1st derivative of y + L, a0 E; {, z n& q+ y$ ?
0 }6 J3 B- C/ `, @
- L/ _% C$ j, A- [: c% m' K2 D6 C; m , the nth derivative of y ) q9 T; j9 H4 Z5 k1 |8 T8 U$ l
8 o2 p% D) S( y' a + u+ p: e: D! E/ u
the partial derivative of f with respect to x
' I( Q3 K# R. a+ b6 v/ e* A+ J' s' _* J' N4 h
4 C0 V+ Z1 `4 E0 U+ [( t8 d. ?
the partial derivative of f with respect to y
5 y5 @! A6 r }. n. ^. x/ R/ H W' g3 i. A2 x! _4 ?/ Q
4 T. ]2 @; H5 U0 d4 N I( Q3 c
the indefinite integral of f
2 N6 `/ a, N8 ~7 Q3 o( v* k9 M0 z6 X6 F+ `! \- n+ N6 _
& Y, u c$ c% M3 J: L: G. q
the definite integral of f between a and b (from a to b) 1 e! f* |0 V# ~5 @; t
0 g* V6 s. L) Z5 {" d3 n
/ g' H- P: w" ^+ F( y B% Z0 h8 K the increment of x / u( [0 \1 f5 o
( l$ Q2 o N8 e
6 Z5 H) q! A- t) ]8 z differential x
. ?# ]! i% m6 c% C1 Y9 Y* }/ l+ q* h+ T5 X# a6 u
4 R1 Q" X9 n8 N; H4 t summation of …the sum of the terms indicated ( z1 ]' j5 h6 T) f$ z
' T' N; a6 r' r6 M. e& _" J) H
, {7 W; X4 _# p* d- B# J ∏ the product of the terms indicated + Y/ N6 T+ P0 G( S. K( B( Z7 U& F; ^
0 ~" b/ F. H% r5 t. }& u 9 v; Z2 ?. h4 K7 o- f u5 E
=> implies ' C+ f6 m1 O7 D4 T* |
H/ D! H" u' \* F4 A& D ( U2 h+ z0 n' W1 K9 S( ?- y
is equivalent to
R9 g* w) |: B- R9 w, Q1 i% T4 M5 M. Q3 z
! N) {) ~8 f2 e7 D# {' G1 C M
( ) round brackets; parantheses
2 C k% j7 F1 j
+ J' h- u7 f" |. U6 B, w K, C3 S 3 d; j/ M. ]. B0 @
[ ] square brackets
- [7 x6 f! [/ a/ M4 z V: Q/ W4 U2 Z) i* P
% C+ |1 `2 V3 x" H
{ } braces
1 b# N( H9 j$ ?7 v' `1 q/ m# e9 o4 A$ E7 M
z% y' _# v, k4 A$ b
! \' @0 ], U: f h: P& h
- N$ Z& a: _/ t6 ] 8 h+ D" Q& U: U* Q+ ]
- K" R/ P, X8 s# ^. d
|