QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 6454|回复: 27
打印 上一主题 下一主题

素数个数公式及疑难猜想破解(新稿)

[复制链接]
字体大小: 正常 放大
llz2012        

15

主题

13

听众

992

积分

升级  98%

  • TA的每日心情
    开心
    2018-4-11 18:07
  • 签到天数: 222 天

    [LV.7]常住居民III

    自我介绍
    高中数学教师
    跳转到指定楼层
    1#
    发表于 2013-10-7 10:59 |只看该作者 |倒序浏览
    |招呼Ta 关注Ta
    素数个数公式及疑难猜想破解(新稿).doc (346 KB, 下载次数: 0) 1.gif 2.gif 3.gif 4.gif 5.gif 6.gif 7.gif 1 P4 ?9 ]& R% ^/ n
    zan
    转播转播0 分享淘帖0 分享分享0 收藏收藏0 支持支持0 反对反对0 微信微信
    Rocca1231     中国数模人才认证   

    12

    主题

    113

    听众

    1872

    积分

  • TA的每日心情
    开心
    2018-9-6 21:46
  • 签到天数: 448 天

    [LV.9]以坛为家II

    2013挑战赛参赛者

    国际赛参赛者

    群组学术交流B

    群组C题讨论群

    群组英语科技论文写作实训

    回复

    使用道具 举报

    llz2012        

    15

    主题

    13

    听众

    992

    积分

    升级  98%

  • TA的每日心情
    开心
    2018-4-11 18:07
  • 签到天数: 222 天

    [LV.7]常住居民III

    自我介绍
    高中数学教师
    回复

    使用道具 举报

    llz2012        

    15

    主题

    13

    听众

    992

    积分

    升级  98%

  • TA的每日心情
    开心
    2018-4-11 18:07
  • 签到天数: 222 天

    [LV.7]常住居民III

    自我介绍
    高中数学教师
    原《素数个数公式及疑难猜想破解》(再改稿)与《素数个数公式及疑难猜想破解》(新稿)在定理2的证明上有本质差别。潜在用了素数定理,后者没有用素数定理,且后者揭示了素数分布的内在本质规律。
    回复

    使用道具 举报

    llz2012        

    15

    主题

    13

    听众

    992

    积分

    升级  98%

  • TA的每日心情
    开心
    2018-4-11 18:07
  • 签到天数: 222 天

    [LV.7]常住居民III

    自我介绍
    高中数学教师
    回复

    使用道具 举报

    llz2012        

    15

    主题

    13

    听众

    992

    积分

    升级  98%

  • TA的每日心情
    开心
    2018-4-11 18:07
  • 签到天数: 222 天

    [LV.7]常住居民III

    自我介绍
    高中数学教师
    我给出的公式,主函数LLz(x) =Li(x)-Li(√x)/2,我认为有这些优点:几乎只有波动误差,且能给出波动误差的范围。不是拟合,而是素数规律本质的刻画。
    回复

    使用道具 举报

    llz2012        

    15

    主题

    13

    听众

    992

    积分

    升级  98%

  • TA的每日心情
    开心
    2018-4-11 18:07
  • 签到天数: 222 天

    [LV.7]常住居民III

    自我介绍
    高中数学教师
    回复

    使用道具 举报

    llz2012        

    15

    主题

    13

    听众

    992

    积分

    升级  98%

  • TA的每日心情
    开心
    2018-4-11 18:07
  • 签到天数: 222 天

    [LV.7]常住居民III

    自我介绍
    高中数学教师
        设2n(n>2的整数),p为不大于√(2n)的素数,2n=m+(2n-m) , (2<m≤n),若m≠0modp  且  (2n-m)≠0modp,则m, (2n-m)为两素数。4 c, R* }" W; Q1 |0 _2 s
        m≠0modp是去掉模p余0的数,(2n-m)≠0modp是去掉2n与m模p同余的数。如果2n是p的倍数,则去掉模p余0的一个同余类数。如果2n不是p的倍数(2n除以p余a≠0),则去掉模p余0和模p余a这两个同余类数。素数p≥5时,余下同余数类大于去掉同余数类,且p≤√(2n),所以,当4≤2n≤24哥德巴赫成立即可。并且随着偶数的增大,表为两素数和式的个数也波动地增大。不难验证4≤2n≤24哥德巴赫成立。所以哥德巴赫猜想是正确的。5 I( @# @. u) `& i. v
    回复

    使用道具 举报

    llz2012        

    15

    主题

    13

    听众

    992

    积分

    升级  98%

  • TA的每日心情
    开心
    2018-4-11 18:07
  • 签到天数: 222 天

    [LV.7]常住居民III

    自我介绍
    高中数学教师
    设正整数n,p为不大于√(n+2)的素数,相差2的两数m和(m+2),若m≠0modp  且  (m+2)≠0modp,则m, (m+2)为孪生素数。& H7 ^. R* n8 l* [# u7 G1 ~- x
    m≠0modp是去掉模p余0的数,(m+2)≠0modp是去掉模p余(p-2)的数。在前(n+2)个正整数中去掉模p余0和模p余(p-2)的两个同余类数,余下的数m就能满足m和(m+2)为孪生素数。当p≥5时,余下同余数类大于去掉同余数类,且p≤√(n+2),所以,随着n的增大,余下数m的个数增大。所以孪生素数无穷。所以孪生素数猜想正确。- ~1 Y7 _3 K! n) e

    ! {: h$ o7 V! x# E
    回复

    使用道具 举报

    llz2012        

    15

    主题

    13

    听众

    992

    积分

    升级  98%

  • TA的每日心情
    开心
    2018-4-11 18:07
  • 签到天数: 222 天

    [LV.7]常住居民III

    自我介绍
    高中数学教师
        设正整数n,p为不大于√(n+4)的素数,相差4的两数m和(m+2),若m≠0modp  且  (m+4)≠0modp,则m, (m+4)为相差4的素数。
    9 j6 r% z8 u+ }9 O    m≠0modp是去掉模p余0的数,(m+4)≠0modp是去掉模p余(p-4)的数。在前(n+4)个正整数中去掉模p余0和模p余(p-4)的两个同余类数,余下的数m就能满足m和(m+4)为相差4的素数。当p≥5时,余下同余数类大于去掉同余数类,且p≤√(n+4),所以,随着n的增大,余下数m的个数增大。所以相差4的素数无穷多。
    8 ?' q! s0 J9 R  M. Z/ u7 h
    回复

    使用道具 举报

    您需要登录后才可以回帖 登录 | 注册地址

    qq
    收缩
    • 电话咨询

    • 04714969085
    fastpost

    关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

    手机版|Archiver| |繁體中文 手机客户端  

    蒙公网安备 15010502000194号

    Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

    GMT+8, 2025-11-7 12:16 , Processed in 1.099222 second(s), 98 queries .

    回顶部