QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 3577|回复: 2
打印 上一主题 下一主题

哥德巴赫猜想之解是?

[复制链接]
字体大小: 正常 放大
artwin        

33

主题

2

听众

104

积分

升级  2%

该用户从未签到

跳转到指定楼层
1#
发表于 2005-4-28 09:45 |只看该作者 |倒序浏览
|招呼Ta 关注Ta

哥德巴赫猜想之解是:P1,P2,=n±√(n-1)2-φ(n2-t2)

8 U% r: T5 o/ d4 O

欧拉函数φ(m) 的定义是指: 在1,2,…,m-1这m-1个自然数中,与m互质的数的个数记为φ(m) ,肯定了将m表为两个互质的自然数之和有且仅有φ(m)/2个解。

3 z1 ?/ W, ]' S: J

若p 的欧拉函数φ(P)=p-1,表示将p表和只有互质解,没有不互质解,则p是素数;若n2-t2的欧拉函数φ(n2-t2)< n2-t2-1,表示将n2-t2表和有不互质解,则n2-t2是合数。这对于n2-t2是奇合数,将n2-t2表为两自然数之和共有(n2-t2-1)/2个解,已知其中有φ(n2-t2)/2个互质解,则余下的 [n2-t2-1-φ(n2-t2)]/2个解是不互质解。

1 k+ d5 n# X4 n( {1 \, n. \ r

定理:若奇合数n2-t2表为两个不互质的自然数之和有且仅有n-1个解。则n2-t2是双(异)因子奇合数,n±t同为奇素数。

6 K7 w8 o0 H) {' u0 |9 w4 S

证:据题意为[n2-t2-1-φ(n2-t2)]/2=n-1,则n2-t2-1-φ(n2-t2)=2n-2给出:

5 L& \+ K- {! ^' P: p) o% [- y* E

φ(n2-t2)=n2-2n+1-t2=(n-1)2-t2=(n+t-1)(n-t-1)=φ(n+t)·φ(n-t)

, v M( b! E0 d; G, q

其中的φ(n+t)=n+t-1与φ(n-t)=n-t-1,即给定了n±t同为奇素数(证完)。

3 ~- T& a# v% e) B& k3 G" E

显然,由双(异)因子奇合数n2-t2的欧拉函数φ(n2-t2)= (n-1)2-t2,立得

3 \& G9 _2 r5 v$ A8 O+ G: v# x

P1,P2,=n±√(n-1)2-φ(n2-t2)、n-1>t>0、(n,t)=1、2|nt→P1+P2=2n

0 Y4 C8 T4 S5 U. ?2 r2 |( H8 _

并且:[φ(n+t)+φ(n-t)]/2=φ(p1)/2+φ(p2)/2=n-1是n的前位数。在以3为首项与2为公差的等差数列中,φ(n+t)/2=φ(p1)/2与φ(n-t)/2=φ(p2)/2,都是素数项的项标,按辛答拉姆(印度)与余新河(香港)的话说,这样的两个素数项的项标相加,可以加成扣除1与2在外的自然数列。

) d/ D( |# k0 X" l

结论:恒有[n2-t2-1-φ(n2-t2)]/2=n-1≥3是n的前位数,给定了“自然数n≥4都有P1+P2=2n且P1≠P2同为素数”,无法假设哥德巴赫猜想不真实。

zan
转播转播0 分享淘帖0 分享分享0 收藏收藏0 支持支持0 反对反对0 微信微信

11

主题

7

听众

458

积分

升级  52.67%

  • TA的每日心情
    开心
    2015-10-24 18:10
  • 签到天数: 105 天

    [LV.6]常住居民II

    回复

    使用道具 举报

    狂人gs        

    5

    主题

    3

    听众

    467

    积分

    升级  55.67%

  • TA的每日心情
    奋斗
    2012-9-10 21:35
  • 签到天数: 174 天

    [LV.7]常住居民III

    群组Matlab讨论组

    群组学术交流A

    回复

    使用道具 举报

    您需要登录后才可以回帖 登录 | 注册地址

    qq
    收缩
    • 电话咨询

    • 04714969085
    fastpost

    关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

    手机版|Archiver| |繁體中文 手机客户端  

    蒙公网安备 15010502000194号

    Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

    GMT+8, 2025-6-22 02:25 , Processed in 0.900790 second(s), 62 queries .

    回顶部