QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 2810|回复: 1
打印 上一主题 下一主题

用一个”栗子“讲清楚泊松分布

[复制链接]
字体大小: 正常 放大
浅夏110 实名认证       

542

主题

15

听众

1万

积分

  • TA的每日心情
    开心
    2020-11-14 17:15
  • 签到天数: 74 天

    [LV.6]常住居民II

    邮箱绑定达人

    群组2019美赛冲刺课程

    群组站长地区赛培训

    群组2019考研数学 桃子老师

    群组2018教师培训(呼伦贝

    群组2019考研数学 站长系列

    跳转到指定楼层
    1#
    发表于 2020-5-15 10:51 |只看该作者 |倒序浏览
    |招呼Ta 关注Ta |邮箱已经成功绑定
    我们这篇文章的内容关于统计学中的泊松分布。
    举个栗子
    " O& s) A5 v, A! v- |
    泊松分布在概率统计当中非常重要,可以很方便地用来计算一些比较难以计算的概率。很多书上会说,泊松分布的本质还是二项分布,泊松分布只是用来简化二项分布计算的。从概念上来说,这的确是对的,但是对于我们初学者,很难完全理解到其中的精髓。

    ; `& C8 Q8 f+ {3 e3 E2 p; {
    所以让我们来举个栗子,来通俗地理解一下。
    & |4 Q5 Z5 g0 h* B2 K
    假设我们有一颗栗子树,有时候因为风或者是小动物活动的关系,树上可能会掉下栗子来,树上掉栗子显然是一个偶然事件,并且发生的概率很低,那么我们怎么求它的概率分布呢?泊松分布解决的就是这样一个问题。
    ' l/ x8 j& a7 S( C
    好像没有一个模型可以直接来刻画这个问题,必须要经过一些转化。
    3 m# e0 i# L' p; `) f  C. y
    其实我们可以将事件切分,将这个问题转化成二项分布问题。

    2 C. w* E" P  M5 a3 n8 @ 1.jpg
    % r4 V/ X+ y2 S$ K+ l5 u2 t' b7 L
    比如我们把一天的时间切分成了若干份,这样对于每一份时间来说,最多只会掉一个栗子。那么,这就转化成了一个二项分布问题。理论上来说不会有两颗栗子掉下的时间完全一样,所以只要我们将时间切分得足够细,就可以保证一段时间之中最多只会掉下一个栗子(否则就不满足二项分布)。
    4 l3 p7 ~8 p% \1 x3 N# y0 k
    假设我们把一天的时间切分成了n份,我们想知道一天当中会有k个栗子掉下的概率,根据二项分布的公式,这个概率就是:

    , W" l* t6 Z5 z( S2 N 2.png 3 x+ H' i. N( J: u4 @5 F
    到这里,我们往前迈出了坚实的一步,写出了概率的表达式。
    推导泊松分布
    * q. R; v- Y5 R$ N; I- J% }: h( H
    我们虽然有了式子,但是好像没什么用,因为我们只知道p是单位时间内有栗子掉下的概率,我们怎么知道这个概率是多大呢?难道还真的去测量吗?

    % u3 g9 y% x2 M, @6 z5 G
    要解决这个问题,还得回到二项分布。我们可以利用二项分布求一下每天掉下栗子数量的期望,显然对于每一个单位时间而言,发生栗子掉落的概率是p,所以整体的期望是:
    " J  w/ l! {' z8 Z& L
    3.png
    1 M' x8 n( S5 v+ ]我们令这个期望值是,那么根据这个式子,我们可以表达出p了。
    : _# `7 M; m2 B' ~8 z0 K3 z3 G: K 4.png
    & C) F$ b" _" O% T$ N: g8 Y: n我们把这个p的式子带入原式,可以得到:) ~1 g: i# [0 V( z4 h* ^, z" Z
    5.png
    + C3 ]$ Q" \* W0 E1 ~* N+ S/ y我们来算一下这个极限:
    , b* L. M, a% K5 A* c( l2 k 6.png
    ' Q; ]+ t1 j7 p, A' k( t我们把这个极限拆分开来看,其中:3 z/ f( @) o* u  p6 M/ k
    7.png , O; Q; @6 }' R9 p, [0 N
    所以,我们代入,可以得到:) g/ q3 F! }8 |+ ?5 b: n
    8.png 8 p" M8 Z, w2 m4 @1 b, F" m0 Y
    这个就是泊松分布的概率密度函数了,也就是说在一天当中掉下k个栗子的概率就是/ g. Z( w. t- l
    也就是说泊松分布是我们将时间无限切分,然后套用二项分布利用数学极限推导出来的结果。本质上来说,它的内核仍然是二项分布。使用泊松分布的原因是,当n很大,p很小的时候,我们使用二项分布计算会非常困难,因为使用乘方计算出来的值会非常巨大,这个时候,我们使用泊松分布去逼近这个概率就很方便了。
    结尾和升华
    + \9 i, k1 o8 c" Y3 y' J0 @
    我们根据推导出来的结果,感觉只要是n很大,并且p很小的场景都可以使用泊松分布。但是这毕竟只是一个感性的认知,在统计学上对于这个问题也是有严谨定义的。我们来看一下严谨的使用条件的限制,大概是这么三条。
    $ J* v1 u4 u9 \0 L% N& e; g0 h1 R( U
    • 当我们将时间进行无线切分之后,在接近于0的时间段内事件发生的概率与时间成正比。
    • 在每一段无限小的时间段内,同一事件发生两次的概率无限接近于0
    • 在不同的时间段内,事件是否发生互相独立) p9 y1 y1 Y9 @" l: W6 h  s

    : v) ~. w6 Z5 ^1 G7 J
    最后,我们看一道书上的例题,实际感受一下泊松分布的应用。假设我们有一批零件,它的次品率是0.1%,也就是千分之一。请问我们生产一千个产品当中至少有两件次品的概率?

    . ^& l3 b/ {% j' M" I% b
    这道题应该很简单,要求两件及以上次品的概率,我们只需要计算出只有零件和一件次品的概率,然后用1减去它们即可。我们首先根据n和p算出

    9 y* u2 U, @* @
    我们带入泊松分布的公式:

    " ?$ d8 w- Y2 l& l9 A; [- B
    如果我们要用二项分布来计算,那么就需要计算0.999的一千次方了,这显然是非常麻烦的,这也是泊松分布的意义。
    转载于公众号:TechFlow" u$ `5 L- m8 g  ^9 C$ [
    ; S/ H( ?& G' @/ G; g2 r

    6 P6 g1 l! c# v3 H; q1 R8 r- z2 y* W5 A, U: b7 |- y9 ]
    zan
    转播转播0 分享淘帖0 分享分享0 收藏收藏0 支持支持1 反对反对0 微信微信
    德古拉        

    2

    主题

    4

    听众

    162

    积分

    升级  31%

  • TA的每日心情
    奋斗
    2025-3-11 17:13
  • 签到天数: 125 天

    [LV.7]常住居民III

    国际赛参赛者

    自我介绍
    嘶嘶。。。
    回复

    使用道具 举报

    您需要登录后才可以回帖 登录 | 注册地址

    qq
    收缩
    • 电话咨询

    • 04714969085
    fastpost

    关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

    手机版|Archiver| |繁體中文 手机客户端  

    蒙公网安备 15010502000194号

    Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

    GMT+8, 2025-5-16 00:31 , Processed in 0.413509 second(s), 59 queries .

    回顶部