深度学习(DL, Deep Learning)是机器学习(ML, Machine Learning)领域中一个新的研究方向,它被引入机器学习使其更接近于最初的目标——人工智能(AI, Artificial Intelligence)。, F& D, m; E J3 ~! P h6 I; \
深度学习是学习样本数据的内在规律和表示层次,这些学习过程中获得的信息对诸如文字,图像和声音等数据的解释有很大的帮助。它的最终目标是让机器能够像人一样具有分析学习能力,能够识别文字、图像和声音等数据。 深度学习是一个复杂的机器学习算法,在语音和图像识别方面取得的效果,远远超过先前相关技术。 [1] & x1 S# r% k$ [2 U
深度学习在搜索技术,数据挖掘,机器学习,机器翻译,自然语言处理,多媒体学习,语音,推荐和个性化技术,以及其他相关领域都取得了很多成果。深度学习使机器模仿视听和思考等人类的活动,解决了很多复杂的模式识别难题,使得人工智能相关技术取得了很大进步。
1 i- ^0 n8 o8 l4 y" y" {! S* _. f$ f) z* O6 d: j( Y r6 `+ c
近年来,深度人工神经网络(包括循环神经网络)在众多比赛中脱颖而出。本书回顾了深度监督学习(也概括了反向传播的历史),无监督学习、强化学习和进化计算、间接搜索编码深度和大型网络的程序。
" U* P" N2 o. d; L R0 T" i: t9 C7 D) [, b7 u- L
|