- 在线时间
- 113 小时
- 最后登录
- 2022-8-4
- 注册时间
- 2018-9-18
- 听众数
- 5
- 收听数
- 0
- 能力
- 0 分
- 体力
- 4437 点
- 威望
- 0 点
- 阅读权限
- 255
- 积分
- 1562
- 相册
- 0
- 日志
- 0
- 记录
- 0
- 帖子
- 461
- 主题
- 485
- 精华
- 0
- 分享
- 0
- 好友
- 1
TA的每日心情 | 衰 2021-1-13 09:31 |
---|
签到天数: 8 天 [LV.3]偶尔看看II
 |
在线投资组合是近年来计算金融领域热门的研究课题.目前已有的策略,对股票价格的预测效果并不十分理想,而对股价的准确预测对投资组合方式有重要的指导意义.考虑到股价的滞后性及其分布的复杂性,首次利用股价中的二阶信息,提出了DMAR (DMA (Double Moving Average) Reversion)、DEAR(DEA (Double Exponential Average) Reversion)、 GMR (GM Reversion)、 DA-GMR (DA-GM Reversion)4种投资组合策略:分别通过二次移动平均法、二次指数滑动预测法、灰色预测法,对下一期的价格数据进行了预测、集成学习;将二次平滑预测和灰色预测的结果进行了优化,得到了下一期的预测价格;再利用被动攻击(Passive-Aggressive, PA)算法更新投资组合,最终得到了4种投资组合策略,并在真实的金融市场的数据集中验证了策略的有效性.结果表明,与已有的算法相比,在NYSE (O)、NYSE (N)、DJIA和MSCI这4个真实的金融市场的数据集上,所提出的4种投资组合策略都达到了较高的累计收益. 0 P9 @+ r2 j/ w
& o. ^6 \, Q: I( V* \' V
|
zan
|