- 在线时间
- 129 小时
- 最后登录
- 2023-8-30
- 注册时间
- 2020-11-26
- 听众数
- 3
- 收听数
- 0
- 能力
- 0 分
- 体力
- 15942 点
- 威望
- 0 点
- 阅读权限
- 255
- 积分
- 4992
- 相册
- 0
- 日志
- 0
- 记录
- 0
- 帖子
- 419
- 主题
- 395
- 精华
- 0
- 分享
- 0
- 好友
- 0
TA的每日心情 | 衰 2021-3-28 15:16 |
---|
签到天数: 25 天 [LV.4]偶尔看看III
 |
基于DAE的单细胞RNA测序数据聚类研究
+ h3 [: Z- X+ D8 b: L! p6 a" | Q) [$ G% m3 V
传统数据降维方法处理单细胞RNA测序数据存在特征提取能力较差、聚类精度较低等问题,有必要引入深度学习方法以提高对复杂数据特征的提取能力。在对数据不进行任何人工筛选的条件下,利用DAE提取表达能力更强的数据特征,分别以K⁃means和DBSCAN聚类作为DAE的顶层设置形成DAE+K⁃means和DAE+DBSCAN组合模型,将这两种深度学习组合模型在Deng 数据集上与传统聚类模型SC3 进行对比。与SC3 的0.73 聚类精度相比,DAE+K⁃means 和DAE+DBSCAN的聚类精度分别达到0.93和0.97,分别提高了0.2和0.24。实验结果表明,DAE在单细胞聚类领域具有广阔的应用前景。% c" b, D: P5 @7 E/ g' P' O
3 F6 {7 E b9 r关键词:单细胞聚类;深度自动编码器;深度学习;K⁃means聚类;DBSCAN聚类;结果分析 V9 x" S4 M: k1 _" D1 c' p
|
zan
|