- 在线时间
- 473 小时
- 最后登录
- 2025-11-14
- 注册时间
- 2023-7-11
- 听众数
- 4
- 收听数
- 0
- 能力
- 0 分
- 体力
- 7700 点
- 威望
- 0 点
- 阅读权限
- 255
- 积分
- 2891
- 相册
- 0
- 日志
- 0
- 记录
- 0
- 帖子
- 1162
- 主题
- 1177
- 精华
- 0
- 分享
- 0
- 好友
- 1
该用户从未签到
 |
重新设计网络层更少的网络,在循环神经网络中,训练过程中在更少的先前时间步上进行更新。(沿时间的截断反方向传播)来缓解梯度爆炸问题。使用ReLU激活函数使用LSTM网络
5 }- d: ~% S3 r2 C+ H7 _4 hLSTM(长短期记忆),是一种特殊的RNN, 在循环神经网络中,梯度爆炸发生可能是因为某种网络的训练本身存在不稳定性,如随时间的反向传播本质上是将循环网络转换成深层神经网络。" h) L+ N- v) x' l; p+ H
使用LSTM单元和相关的门类神经元结构可以减少梯度爆炸问题。使用梯度截断, 在训练过程中检查和限制梯度的大小,当梯度超过阈值就截断。对权重使用正则化。惩罚产生较大权重的损失函数。
1 {8 ^$ q9 R$ E' Y8 d& ]# k
/ K! k' {2 j" c9 n. W# E0 R% b1 p6 o; P$ k8 i; o" I
+ v" d. B- O4 ^9 l& d
, C: V* i2 V' N& |& y7 ]7 b, b4 z! h |
zan
|