QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 2628|回复: 0
打印 上一主题 下一主题

[已经解决] 模拟退火和梯度下降的区别

[复制链接]
字体大小: 正常 放大

1175

主题

4

听众

2866

积分

该用户从未签到

跳转到指定楼层
1#
发表于 2023-9-2 19:17 |只看该作者 |倒序浏览
|招呼Ta 关注Ta
模拟退火算法和梯度下降算法是两种不同的优化算法,适用于不同的问题和优化目标。它们在搜索最优解的方式、步骤和原理上存在一些显著的区别。
  • 搜索方式:

    5 Z3 @* M& v* z8 ^; \1 d
    • 模拟退火:模拟退火算法通过模拟固体物体退火过程中的原子运动,以一定的概率接受较差的解,并逐渐降低温度来减小概率,从而在解空间中进行较大范围的全局搜索和逐渐收敛到最优解。
    • 梯度下降:梯度下降算法通过计算目标函数的梯度(导数)方向来确定搜索方向,在当前位置沿着梯度反方向进行迭代更新,以逐步接近目标函数的最小值。& q6 y+ [. y4 d+ X
  • 目标函数:

    % s6 J0 M. }" n! a+ L/ h3 _
    • 模拟退火:模拟退火算法通常用于求解复杂、非线性的优化问题,可以处理具有多个局部最优解的函数,并具有较强的全局搜索能力。
    • 梯度下降:梯度下降算法更适用于求解可导函数的最小值,特别是凸函数,其主要关注点是在局部区域中找到最优解。$ N9 B' C& U7 k4 |6 ~
  • 迭代更新:

    7 N- y* ]8 `, Q0 W: \& [
    • 模拟退火:模拟退火算法通过接受较差解的概率来避免陷入局部最优解,以一种随机的方式在解空间中搜索。通常通过调整温度和退火率控制搜索的范围和收敛速度。
    • 梯度下降:梯度下降算法根据目标函数的梯度方向以固定步长进行迭代更新。根据梯度的大小和方向调整步长,可以实现更快的收敛速度。
      " U% v0 t. p' C! }
  • 收敛性质:

    : Q5 b, `# J, g( A
    • 模拟退火:模拟退火算法具有一定的随机性,可能在全局最优解附近震荡一段时间,但最终能够以一定的概率找到全局最优解。
    • 梯度下降:梯度下降算法通常能够在有限步数内收敛到局部最优解,但可能受到局部最优解的限制,无法找到全局最优解。
      - {( |6 S% X. H: J7 P
综上所述,模拟退火算法和梯度下降算法在搜索方式、目标函数、迭代更新和收敛性质等方面存在显著差异。选择哪种算法取决于具体问题的特点和求解需求。如果需要全局搜索和处理复杂的非线性问题,可以考虑模拟退火算法;而对于求解可导函数的最小值和快速收敛,梯度下降算法可能更合适。
8 O4 q; j4 {$ F5 P% T
: A; T. X! c) c7 D2 q& d1 R

" D' V. J2 W" G/ S% T6 b6 M

模拟退火和梯度下降.doc

12.5 KB, 下载次数: 0, 下载积分: 体力 -2 点

售价: 2 点体力  [记录]  [购买]

zan
转播转播0 分享淘帖0 分享分享0 收藏收藏1 支持支持0 反对反对0 微信微信
您需要登录后才可以回帖 登录 | 注册地址

qq
收缩
  • 电话咨询

  • 04714969085
fastpost

关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

手机版|Archiver| |繁體中文 手机客户端  

蒙公网安备 15010502000194号

Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

GMT+8, 2025-8-18 10:14 , Processed in 0.406924 second(s), 55 queries .

回顶部