QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 1311|回复: 0
打印 上一主题 下一主题

改进非支配领域免疫算法目标优化代码

[复制链接]
字体大小: 正常 放大

1177

主题

4

听众

2891

积分

该用户从未签到

跳转到指定楼层
1#
发表于 2024-2-1 11:05 |只看该作者 |倒序浏览
|招呼Ta 关注Ta
非支配领域免疫算法(Non-dominated Sorting Genetic Algorithm,简称NSGA)是一种进化算法,主要用于多目标优化问题。它的设计灵感来自于免疫系统的工作原理和非支配排序的思想。该算法的目标是在搜索空间中找到一组解,这组解在多个目标函数方面都优于其他解,形成一个前沿(Pareto Front)。
以下是NSGA的基本步骤:

1.初始化种群: 随机生成一组初始解,称为个体。每个个体都是搜索空间中的一个可能解。
2.非支配排序: 对种群中的个体进行非支配排序。通过比较个体之间的优劣关系,将它们分成不同的层次,形成不同的前沿。
3.拥挤度计算: 对每个前沿中的个体计算拥挤度,以评估个体在前沿中的密度。拥挤度越大,表示个体越分散在前沿中。
4.选择操作: 根据非支配排序和拥挤度,执行选择操作,选择一部分个体作为父代。优先选择在前沿的个体,然后根据拥挤度选择。
5.交叉(交配): 对选择的父代进行交叉操作,生成新的后代。交叉操作保留了父代中优秀个体的特征。
6.变异: 对产生的后代进行变异操作,引入新的基因变化。变异操作有助于保持种群的多样性。
7.新种群形成: 将父代和后代合并形成新的种群。
8.重复进化过程: 重复执行上述步骤,直到满足停止条件,如达到最大迭代次数、达到一定的前沿质量等。
9.输出结果: 输出最终的前沿作为算法的结果。

NSGA的优势在于能够处理多目标优化问题,找到在所有目标函数中都较好的解。通过非支配排序和拥挤度计算,NSGA能够维护多个解的多样性,有助于探索全局最优解的搜索空间。



改进非支配邻域免疫算法目标优化代码.rar

7.46 KB, 下载次数: 0, 下载积分: 体力 -2 点

售价: 2 点体力  [记录]  [购买]

zan
转播转播0 分享淘帖0 分享分享0 收藏收藏0 支持支持0 反对反对0 微信微信
您需要登录后才可以回帖 登录 | 注册地址

qq
收缩
  • 电话咨询

  • 04714969085
fastpost

关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

手机版|Archiver| |繁體中文 手机客户端  

蒙公网安备 15010502000194号

Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

GMT+8, 2025-11-12 07:42 , Processed in 1.087055 second(s), 54 queries .

回顶部