- 在线时间
- 463 小时
- 最后登录
- 2025-6-15
- 注册时间
- 2023-7-11
- 听众数
- 4
- 收听数
- 0
- 能力
- 0 分
- 体力
- 7334 点
- 威望
- 0 点
- 阅读权限
- 255
- 积分
- 2778
- 相册
- 0
- 日志
- 0
- 记录
- 0
- 帖子
- 1156
- 主题
- 1171
- 精华
- 0
- 分享
- 0
- 好友
- 1
该用户从未签到
 |
《深度学习》是深度学习领域唯一的综合性图书,全称也叫做深度学习 AI圣经(Deep Learning),由三位全球知名专家IanGoodfellow、YoshuaBengio、AaronCourville编著,全书囊括了数学及相关概念的背景知识,包括线性代数、概率论、信息论、数值优化以及机器学习中的相关内容。同时,它还介绍了工业界中实践者用到的深度学习技术,包括深度前馈网络、正则化、优化算法、卷积网络、序列建模和实践方法等,并且调研了诸如自然语言处理、语音识别、计算机视觉、在线推荐系统、生物信息学以及视频游戏方面的应用。最后,深度学习全书还提供了一些研究方向,涵盖的理论主题包括线性因子模型、自编码器、表示学习、结构化概率模型、蒙特卡罗方法、配分函数、近似推断以及深度生成模型,适用于相关专业的大学生或研究生使用。& a" K. H7 {3 l- g# p5 {
2 ?, x! X6 q7 H9 N: M5 f, V( T, I深度学习原理与代码实现 正如你在 pdf 文件中所见到的,《深度学习》涉及到的每一个概念,都会去给它详细的描述、原理层面的推导,以及用代码的实现。代码实现不会调用 Tensorflow、PyTorch、MXNet 等任何深度学习框架,甚至包括 sklearn (pdf 里用到 sklearn 的部分都是用来验证代码无误),一切代码都是从原理层面实现 (Python 的基础库 NumPy),并有详细注释,与代码区上方的原理描述区一致,你可以结合原理和代码一起理解。4 n" L' W8 e. R' I7 O# E
$ N! U' J; s7 C/ V3 a; A
8 x$ C, r; |% \* N1 P# s3 e
?2 ]4 q9 S& X6 F; y) e( F) E2 L0 \
|
zan
|