- 在线时间
- 17 小时
- 最后登录
- 2016-8-29
- 注册时间
- 2009-1-19
- 听众数
- 3
- 收听数
- 0
- 能力
- 0 分
- 体力
- 423 点
- 威望
- 0 点
- 阅读权限
- 30
- 积分
- 178
- 相册
- 0
- 日志
- 0
- 记录
- 0
- 帖子
- 100
- 主题
- 20
- 精华
- 0
- 分享
- 0
- 好友
- 8
升级   39% TA的每日心情 | 开心 2016-8-29 17:02 |
|---|
签到天数: 18 天 [LV.4]偶尔看看III
 |
人们希望的哥猜结论
4 A! ?4 a" h4 O# b* v/ h3 J 人们希望的是:1、素因子对合数删除后的剩余奇数之和,可以组成连续偶数;2、大偶数的素数对是小偶数素数对的延伸;3、哥德巴赫猜想成立理由。" u8 ~) I3 C; I( R& ^
一、哥猜小公式3 ?" b% M# m S
1、我们知道,素数2对它的倍数的数删除后,在自然数中剩余了奇数,奇数可以表示为2X+1,设大于2的偶数为2N,大于2的偶数可以表示为奇数加奇数,即:2N→(2X+1)+(2X+1);
/ @( A# @+ A+ b R5 G1 M0 `+ M 2、素数2,3对它们的倍数的数删除后,在自然数中剩余了两个等差数列:6X+1和6X+5。也就是说,大于3的素数只能够存在于这两个等差数列之中。而大于6的偶数,我们可以用3个等差数列表示,即:6N,6N+2,6N+4。偶数数列与剩余奇数数列1+1的对应关系为:
8 A5 [1 G7 ]6 D! x6N→(6X+1)+(6X+5);(1)4 d- q8 V1 K4 o" }' S
6N+2→(6X+1)+(6X+1);(2)
& f2 L+ W: _9 Z( b( N6N+4→(6X+5)+(6X+5);(3)
; A4 i/ ~5 p. I3 `/ Q- S 如果说,我们对于偶数不按照这种对应关系去寻找素数对,那么,其对应数必然被素数2、3整除(或者说删除)。$ y8 K! t7 ~& H
1式所对应的是两个不同的等差数列相加,即双数列相加,我们把这种对应关系视为1(不是哥德巴赫猜想中的1+1的1哈,后同);2式和3式为同1个等差数列相加,即单数列相加,我们把这种对应关系视为0.5。7 d4 Q7 I* G3 [, R. K
3、素数5再上面两个剩余等差数列的基础上,删除素数5的倍数的数后,剩余奇数为8个等差数列:30X+1,30X+7,30X+11,30X+13,30X+17,30X+19,30X+23,30X+29,也就是说,大于5的素数只能够存在于这8个等差数列之中。而大于30的偶数,我们可以表示为15个等差数列:30N+2,30N+4,30N+6,30N+8,……30N+28,30N。这15个偶数等差数列与8个剩余奇数等差数列1+1的对应关系是怎样的呢? K; T7 ]7 ^( _" {8 G, E
偶数6N+2等差数列取5项有:2,8,14,20,26;
4 E0 F/ v" i/ d8 O& B* U$ L 偶数6N+4等差数列取5项有:4,10,16,22,28;
8 q! T. c1 }2 `$ G" m 偶数6N等差数列取5项有:6,12,18,24,30。
( H. ^/ {0 d- z& { 也就是说,这里的15偶数等差数列是前面的3个偶数等差数列的延伸,前面的3个偶数等差数列乘以这里的素数删除因子5,变为15个偶数等差数列。那么,它们的奇数数列1+1是不是前面对应关系的延伸呢?它们又是怎样延伸的呢?有没有一个固定不变的公式呢?0 g) O2 b7 _( ~" b- ~0 ] f
首先,申明一点:因为,上面3个偶数等差数列的公差为6,公差6不能够被这里的素数删除因子5整除,所以,前面3个等差数列中的任意一个等差数列的5个连续项,分别除以素数删除因子5,其余数必然分别余1,2,3,4,0,这是一个定理(请搜索“素数与等差数列的关系”)。所以,5个连续项中必然有一个项被素数5整除。' G" l6 h K: T7 {/ I$ j$ h
我们在此,只举两个延伸的例子,剩余的偶数留给大家去验证。
, Y" a% [5 t ~9 g3 N4 v* W2 h (1)、偶数等差数列30N+20与前面的延伸关系。该等差数列中,30为素数删除因子2*3*5,20为前面偶数6N+2数列中的数,那么,偶数30N+20等差数列为6N+2等差数列的延伸偶数,且20能够被这里的素数删除因子5整除。我们将6N+2→(6X+1)+(6X+1)奇数对应关系延伸5项有:
/ G2 Y# L; A: P8 i 1, 7,13,19,25,
. { m/ {5 e4 {; N: @! V19,13, 7, 1,25,) K' ~- u. S: r$ A% q' B
说明:这里的25+25=50,50-公差30也为20,删除能够被素数整除的25+25对应后,剩余1+19和7+13,组成了30N+20→(30X+1)+(30X+19)和30N+20→(30X+7)+(30X+13)两个双数列对应关系。产生了一个小公式:在对应关系延伸中,能够被素数删除因子K整除的偶数,为前面的对应关系*(K-1)。因为,偶数6N+2的对应关系为单数列相加,我们视为0.5*(5-1)=2,所以,这里变为两个双数列相加;& X6 V* K" N% `! o* W. y2 S
(2)、偶数等差数列30N+18与前面的延伸关系。该等差数列中,30为素数删除因子2*3*5,18为前面偶数6N数列中的数,那么,偶数30N+18等差数列为6N等差数列的延伸偶数,且18不能够被这里的素数删除因子5整除。我们将6N→(6X+1)+(6X+5)奇数对应关系延伸5项有:
3 M. Q5 W# s' m2 ? 1, 7,13,19,25,* j/ G& z7 X' T' j8 Z( Q* O) g
17,11, 5,29,23, R& R7 H. b1 Z, c p/ p4 k
说明:这里的19+29=48和25+23=48,48-公差30也为18,删除能够被素数删除因子5整除的25+23和13+5(虽然13+5为素数对,但是30X+5都能够被素数5整除,不可能产生新的素数,即组成公差的素数,我们把它删除)对应后,剩余1+17,7+11和19+29,组成了30N+18→(30X+1)+(30X+17),30N+18→(30X+7)+(30X+11)和30N+18→(30X+19)+(30X+29)三个双数列对应关系,产生了一个小公式:在对应关系延伸中,不能够被素数删除因子K整除的偶数,为前面的对应关系*(K-2)。因为,偶数6N的对应关系为双数列相加,我们视为1*(5-2)=3,所以,这里变为3个双数列相加。
8 B3 q" X; S* g7 e) r' C& M 我们再回过头来,看素数3在素数2删除后的对应关系的延伸,素数2删除后,大于2的偶数可以表示为:(2X+1)+(2X+1),为单数列相加,我们视为0.5,6N数列的偶数能够被素数3整除,按公式为:0.5*(3-1)=1为双数列相加,即,6N→(6X+1)+(6X+5);而6N+2和6N+4两个偶数数列,不能够被素数3整除,按公式为:0.5*(3-2)=0.5,即,6N+2→(6X+1)+(6X+1);6N+4→(6X+5)+(6X+5)。这两种类型的偶数仍然为单数列相加。/ p0 s! X! n) o2 ~
请不要说这是想当然,只有您能够举出该公式不成立的例子,才有资格指责我的这个公式哈。: z, m' `' r2 N9 ]* W( N
二、大偶数的素数对是小偶数的素数对的延伸8 i+ @- E5 A* P
我们举一个例子,进行说明,例偶数68。
9 v. S% |3 @$ M% Y) O3 B ①、偶数68对于以6为公差的等差数列来说,因为,68/6余2,适应于:6N+2→(6X+1)+(6X+1);
! T7 }/ K; T0 R% e ②、偶数68对于以30为公差的等差数列来说,因为,68/30余8,适应于:
- p8 I2 k' l7 ~0 a7 U30N+8→(30X+7)+(30X+1);, V0 |. U5 v4 W7 v g: S% d
30N+8→(30X+19)+(30X+19);6 B! n Y- P4 N4 D" u
因为,68不能够被素数删除因子5整除,故,对于公式有,0.5*(5-2)=1.5,即一个双数列相加,一个单数列相加。
0 e1 A9 Z, Y# F( K" i6 T ③、偶数68对于以210为公差的等差数列来说,因为,68/210余68,适应于:
; J& |& Z3 r1 O; S7 e* P2 a" g对于30N+8→(30X+7)+(30X+1)的延伸有:210N+68→(210X+1)+(210X+67);210N+68→(210X+31)+(210X+37);210N+68→(210X+121)+(210X+157);210N+68→(210X+151)+(210X+127);210N+68→(210X+181)+(210X+97);
7 C* p2 O m& D s4 O对于30N+8→(30X+19)+(30X+19)的延伸有:210N+68→(210X+139)+(210X+139);210N+68→(210X+169)+(210X+109);210N+68→(210X+199)+(210X+79);. g$ w c! r1 P5 Q) K7 H# A
因为,68不能够被素数删除因子7整除,故,对于公式有,1.5*(7-2)=7.5,即7个双数列相加,一个单数列相加。
1 Y" Y, _5 G. P4 y Y* z: s3 t$ E 这里所说的68/6余2,有两层意思:一方面是指偶数不能够被素数3整除,另一方面是指奇数数列配对的来源。
1 A9 F* t2 p% G7 d) v- T E 这里说的68/30余8,也是两层意思:一方面是指偶数不能够被素数5整除,另一方面是指奇数数列配对的延伸,与具体偶数有关。
* } W% L& P$ K0 U9 D 这里说68/210余68,表面上看好象多此一举,但它揭露了小偶数素数对与大偶数素数对的扩展关系,具体是怎样的呢?* A1 n1 E) w( `7 x ~: S( j
我们知道:偶数68有两个素数对:7+61,31+37。虽然这两个素数对,都属于(30N+7)+(30+1)中产生的素数对,我们还可以做进一步的分析:
2 K: o* O; g- {% a: u: G& _1 B 当我们将偶数68分解为以30为公差的偶数时,30N+8,此时的公差为2*3*5,没有素因子7,允许在加数中出现素数7,可以表示为:(30N+7)+(30N+1)的奇数数列组合;
, e; E7 t5 j# X3 [ 而当我们将公差视为210时,因为,公差为2*3*5*7,里面有素因子7,那么,在加数中就不允许出现素数7。如果,出现210+7这个数列,当然就毫无意义了,因为,这个等差数列能够被素数7整除,不可能产生新的素数。
! `4 O: q6 F) b$ c. N& O! p# Q 也就是说素数对31+37=68,因为,这里的最小素数为31,所以,我们可以用于以下系列偶数寻找素数对:
F: h g$ i4 O- k 210N+68→(210X+31)+(210X+37);" t9 `5 Q) w8 Y% M
2310N+68→(2310X+31)+(2310X+37);9 z8 _- y7 h& ^, x
30030N+68→(30030X+31)+(30030X+37);
/ V% U1 k0 n! g# B7 n# w 510510N+68→(510510X+31)+(510510X+37);
) T C) ], a! Q1 i* b& A/ d% h; t0 c 9699690N+68→(9699690X+31)+(9699690X+37);& r4 h. J3 Q& e/ ?) A8 ?
223092870N+68→(223092870X+31)+(223092870X+37);
$ D5 X% L0 C6 o7 F. ]9 e 9469693230N+68→(9469693230X+31)+(9469693230X+37);: T; E* g. X9 d5 x$ J
不可以用于200560490130N+68→(200560490130X+31)+(200560490130X+37);因为,公差200560490130=2*3*5*7*11*13*17*19*23*29*31包含了素因子31,所以,(200560490130N+68)-(200560490130X+37)必然被素数31整除,不可能产生新的素数。
1 [: U8 @* T( [ 大偶数的素数对组合是变化无穷的,单说上面这些类型的偶数,我们前面分解到以210为公差时,还有素数对151+127,181+97,139+139,199+79和1+67(这里的1虽然不是素数,但1不能够被任何素因子整除,这种类型的奇数对也是可以发展的),它们都可以作为上面这些大偶数寻找素数对的引导。) Z# ^( b' Q- L: m S' r
理由依据是什么呢?根据素数与等差数列的关系,素数31是不可能被小于它的素数整除的,即素数31不能够被小于31的素数之积组成的公差中的任何素因子整除,所以,以素数31为首项,以小于31的素数之积为公差组成的等差数列,不可能被小于31的素因子整除。对于素数37也是一样,以素数37为首项,以小于37的素数之积为公差组成的等差数列,不可能被小于37的素因子整除。对于这两个素数,我们同时取小于31的素数之积为公差组成的等差数列,都不可能被小于31的素因子整除,偶数也取相同的公差,当然,它们的对应关系成立。我们同样根据素数与等差数列的关系,这些公差不能够被31以上的素数整除,故,这些等差数列的31个连续项,必然有一个项被素数31整除(删除)。
~2 Q2 v+ {: _: C# f 反过来说,任何大偶数除以连续素因子之积,必然余数为小偶数,我们可以用这个小偶数的素数对为基础,寻找大偶数的素数对。注意:这种寻找方法,它的素数删除因子为,大于组成公差的最大素数到大偶数平方根以下的素数。 g2 Z' g3 K& j' U& ]- ]
我们任意举一个例子,寻找偶数968的素数对,因968大于2*3*5*7=210,小于2*3*5*7*11=2310。我们可以用210为公差,用968/210之余数128的素数对进行扩展。为了使大家看得清楚点,我们用968/30余8,前面说了:偶数8虽然有素数对3+5,但3和5都属于组成公差30的素因子,不可能延伸,故,我们提一个公差30出来,为偶数38,38=7+31,19+19,
2 t$ t' | R3 ^ 以7+31的延伸,因为,数列组合为对应组合,所以,我们只须要取对应组合中的一个数列,偶数减去这个数列中的数,必然为另一个数列中的数,我们单看数列7+30N有:8 r3 N7 _5 L4 o% d3 n: M
7,37,67,97,127,157,187,217,247,277,307,337,367,397,427,457,487,517,547,577,607,637,667,697,727,757,787,817,847,877,907,937,967。
7 g$ A- y& V. O$ j$ m1 p 素数7的删除,为两个方面:1是删除素数7的倍数的数(合数);2是删除对应数(31+30N数列能够被素数整除的数),即上面这些数除以素数7与偶数同余的数,其对应数必然被素数对整除(下同)。
. e4 m% w& c% N 因为,公差30不能够被7整除,所以,我们在数列7+30N等差数列中,选择7个连续项为基数,又因968/7余2,故,我们的删除为除以7余2和余0的数即可,只须要在前7项中寻找到这两个数,后面的删除为顺延7项,除以7余0的为1+7N项有:7,217,427,637,847,除以7余2的为2+7N项有,37,247,457,667,877;" W; ]$ @/ i+ z& K% F5 B
素数11的删除,因968/11余0,而素数11的倍数的数也为除以11余0,故只删除除以11余0的项即可,在7+30N的等差数列中,每11个连续项必然有一个数除以11余0,为7+11N项,有:187,517,847。
( O- }6 r5 e& e 素数13的删除,因968/13小数为0.46,故删除除以13余0和小数为0.46的数即可,余0的为9+13N项有:247,637,小数的0.46为4+13N项有:97,487,877,, ]$ n' U$ F6 a5 d0 ^) U
素数17的删除,因968/17为小数0.94,故删除除以17余0和小数为0.94的数即可,余0的为7+17N项有:187,697,小数的0.94为3+17N项有:67,577,
; \* y4 H2 [' M- t4 \ 素数19的删除,因968/19为小数0.94,故删除除以19余0和小数为0.94的数即可,余0的为9+19N项有:247,817,小数的0.94为2+19N项有:37,607,
" S4 r R7 L: j 素数23的删除,因968/23为小数0.08,故删除除以23余0和小数为0.08的数即可,余0的为23+23N项有:667,小数的0.08为20+23N项有:577,
" P# X& J' W8 o. b& C 素数29的删除,因968/23为小数0.37,故删除除以29余0和小数为0.37的数即可,余0的为29+29N项有:667,小数的0.37为5+29N项有:127,( I, S* Q3 b7 h* T. S; A! _, o
素数31的删除,因968/31为小数0.22,故删除除以31余0和小数为0.22的数即可,余0的为8+31N项有:217,小数的0.22为1+31N项有:7,937, |
zan
|