<TABLE cellSpacing=0 cellPadding=0 width=582 border=0>9 N- U% ~/ J/ H3 W
/ f& K' N4 j: t& B0 b1 o
<TR>
2 ^" F' V% l" F3 e9 T<TD class=data>深入浅出谈垃圾的回收—Java 堆的管理</TD></TR>
- G5 o+ C+ r; l! B# o$ O5 e7 e. g, ^. Q5 I<TR>
- r: P9 S7 w- E+ ?9 J<TD class=data>; L8 u( U1 P- r! Y' w
<TABLE cellSpacing=5 cellPadding=0 width="100%" border=0>
/ N$ G$ G p3 p# l+ i
& D: @9 [- j; O# I3 D) \' w c<TR>
f8 ]1 S) c9 H5 Y<TD>- r# W1 K; m& Z) t
<DIV align=right>作者:IT动力源</DIV></TD>
- m# c' Q) t; L3 ^: L( H8 W* H<TD>' y+ D- k( K7 ]8 s3 b$ @
<DIV align=center>来源:赛迪网</DIV></TD>( c% a! ^" S+ X+ R' C
<TD>
! W, T K: r- P/ N<DIV align=center>点击数:<br></DIV></TD>
* H, w1 h/ ]4 @1 F<TD>更新时间:2005-10-26</TD></TR></TABLE></TD></TR>
9 Q$ g* Z% k& w: \3 p s( ?5 d: }* `<TR>
& F; l- N U6 J- z2 |9 Z# ^& G<TD class=data></TD></TR>
3 U# E3 X8 o5 s+ _! ^- p' M<TR>
8 |- U8 E, L- h5 a0 U<TD class=wenben>4 d- d9 `5 p+ k' a
<TABLE width="98%" align=center border=0>
& ~1 \3 [2 c+ T2 ^: `: T, r
. l) X: `- n; H% }- N4 G<TR>7 w4 L$ C4 B& D( b: z4 H0 i* M
<TD>' ]" P- \/ a3 ^3 I8 s
<DIV class=news_content>
( S& W3 b) t$ a; H4 @1 k( o5 }0 q<CENTER>第 <B>1</B> <a href="http://www.itzero.net/Article/J2EE/2005_10/3520_2.html" target="_blank" >2</A> <a href="http://www.itzero.net/Article/J2EE/2005_10/3520_3.html" target="_blank" >3</A> 页 <a href="http://www.itzero.net/Article/J2EE/2005_10/3520_2.html" target="_blank" >下一页</A></CENTER><br>
9 H: ]/ Y; h+ `+ \6 c# e; y. I< > Java的堆是一个运行时数据区,类的实例(对象)从中分配空间。Java虚拟机(Jvm)的堆中储存着正在运行的应用程序所建立的所有对象,这些对象通过new、newarray、anewarray和multianewarray等指令建立,但是它们不需要程序代码来显式的释放。一般来说,堆是由垃圾回收来负责的,尽管Jvm规范并不要求特殊的垃圾回收技术,甚至根本就不需要垃圾回收,但是由于内存的有限性,Jvm在实现的时候都有一个由垃圾回收所管理的堆。垃圾回收是一种动态存储管理技术,它自动地释放不再被程序引用的对象,按照特定的垃圾收集算法来实现资源自动回收的功能。<br><br>垃圾收集的意义<br><br>在c中,对象所占的内存在程序结束运行之前一直被占用,在明确释放之前不能分配给其它对象;而在Java中,当没有对象引用指向原先分配给某个对象的内存时,该内存便成为垃圾。Jvm的一个系统级线程会自动释放该内存块。垃圾收集意味着程序不再需要的对象是无用信息,这些信息将被丢弃。当一个对象不再被引用的时候,内存回收它占领的空间,以便空间被后来的新对象使用。事实上,除了释放没用的对象,垃圾收集也可以清除内存记录碎片。由于创建对象和垃圾收集器释放丢弃对象所占的内存空间,内存会出现碎片。碎片是分配给对象的内存块之间的空闲内存洞。碎片整理将所占用的堆内存移到堆的一端,Jvm将整理出的内存分配给新的对象。<br><br>垃圾收集能自动释放内存空间,减轻编程的负担。这使Java虚拟机具有一些优点。首先,它能使编程效率提高。在没有垃圾收集机制的时候,可能要花许多时间来解决一个难懂的存储器问题。在用Java语言编程的时候,靠垃圾收集机制可大大缩短时间。其次是它保护程序的完整性, 垃圾收集是Java语言安全性策略的一个重要部份。<br><br>垃圾收集的一个潜在的缺点是它的开销影响程序性能。Java虚拟机必须追踪运行程序中有用的对象,而且最终释放没用的对象。这一个过程需要花费处理器的时间。其次垃圾收集算法的不完备性,早先采用的某些垃圾收集算法就不能保证100%收集到所有的废弃内存。当然随着垃圾收集算法的不断改进以及软硬件运行效率的不断提升,这些问题都可以迎刃而解。<br><br>垃圾收集的算法分析<br><br>Java语言规范没有明确地说明Jvm使用哪种垃圾回收算法,但是任何一种垃圾收集算法一般要做2件基本的事情:<br><br>(1)发现无用信息对象;<br>(2)回收被无用对象占用的内存空间,使该空间可被程序再次使用。<br><br>大多数垃圾回收算法使用了根集(root set)这个概念;所谓根集就是正在执行的Java程序可以访问的引用变量的集合(包括局部变量、参数、类变量),程序可以使用引用变量访问对象的属性和调用对象的方法。垃圾收集首选需要确定从根开始哪些是可达的和哪些是不可达的,从根集可达的对象都是活动对象,它们不能作为垃圾被回收,这也包括从根集间接可达的对象。而根集通过任意路径不可达的对象符合垃圾收集的条件,应该被回收。下面介绍几个常用的算法。<br><br>1、引用计数法(reference counting collector)<br><br>引用计数法是唯一没有使用根集的垃圾回收得法,该算法使用引用计数器来区分存活对象和不再使用的对象。一般来说,堆中的每个对象对应一个引用计数器。当每一次创建一个对象并赋给一个变量时,引用计数器置为1。当对象被赋给任意变量时,引用计数器每次加1。当对象出了作用域后(该对象丢弃不再使用),引用计数器减1,一旦引用计数器为0,对象就满足了垃圾收集的条件。<br><br>基于引用计数器的垃圾收集器运行较快,不会长时间中断程序执行,必须实时运行。但引用计数器增加了程序执行的开销,因为每次对象赋给新的变量 ,计数器加1,而每次现有对象出了作用域生,计数器减1。<br><br>2、tracing算法(tracing collector)<br><br>tracing算法是为了解决引用计数法的问题而提出,它使用了根集的概念。基于tracing算法的垃圾收集器从根集开始扫描,识别出哪些对象可达,哪些对象不可达,并用某种方式标记可达对象,例如对每个可达对象设置一个或多个位。在扫描识别过程中,基于tracing算法的垃圾收集也称为标记和清除(mark-and-sweep)垃圾收集器。<br><br>3、compacting算法(compacting collector)<br><br>为了解决堆碎片问题,基于tracing的垃圾回收吸收了compacting算法的思想,在清除的过程中,算法将所有的对象移到堆的一端,堆的另一端就变成了一个相邻的空闲内存区,收集器会对它移动的所有对象的所有引用进行更新,使得这些引用 在新的位置能识别原来 的对象。在基于compacting算法的收集器的实现中,一般增加句柄和句柄表。<br><br>4、coping算法(coping collector)<br><br>该算法的提出是为了克服句柄的开销和解决堆碎片的垃圾回收。它开始时把堆分成一个对象面和多个空闲面,程序从对象面为对象分配空间,当对象满了,基于coping算法的垃圾收集就从根集中扫描活动对象,并将每个活动对象复制到空闲面(使得活动对象所占的内存之间没有空闲洞),这样空闲面变成了对象面,原来的对象面变成了空闲面,程序会在新的对象面中分配内存。<br><br>一种典型的基于coping算法的垃圾回收是stop-and-copy算法,它将堆分成对象面和空闲区域面,在对象面与空闲区域面的切换过程中,程序暂停执行。</P></DIV></TD></TR></TABLE></TD></TR></TABLE>& _8 D- x C. |0 I
[此贴子已经被作者于2005-12-29 17:55:31编辑过] |