QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 3764|回复: 10
打印 上一主题 下一主题

每日科技报告 第22期 Light-Based Computers? First Germanium Laser

[复制链接]
字体大小: 正常 放大

525

主题

10

听众

4072

积分

升级  69.07%

  • TA的每日心情
    奋斗
    2015-1-3 17:18
  • 签到天数: 6 天

    [LV.2]偶尔看看I

    自我介绍
    学习中!

    优秀斑竹奖 元老勋章 新人进步奖 最具活力勋章

    群组Matlab讨论组

    群组C 语言讨论组

    群组每天多学一点点

    群组数学趣味、游戏、IQ等

    群组南京邮电大学数模协会

    跳转到指定楼层
    1#
    发表于 2010-2-6 21:11 |只看该作者 |倒序浏览
    |招呼Ta 关注Ta
    Computers That Use Light Instead of Electricity? First Germanium Laser Created

    MIT researchers have demonstrated the first laser built from germanium that can produce wavelengths of light useful for optical communication. It's also the first germanium laser to operate at room temperature. Unlike the materials typically used in lasers, germanium is easy to incorporate into existing processes for manufacturing silicon chips. So the result could prove an important step toward computers that move data -- and maybe even perform calculations -- using light instead of electricity. But more fundamentally, the researchers have shown that, contrary to prior belief, a class of materials called indirect-band-gap semiconductors can yield practical lasers.

    Light-Based Computers? First Germanium Laser

    As chips' computational capacity increases, they need higher-bandwidth connections to send data to memory. But conventional electrical connections will soon become impractical, because they'll require too much power to transport data at ever higher rates. Transmitting data with lasers -- devices that concentrate light into a narrow, powerful beam -- could be much more power-efficient, but it requires a cheap way to integrate optical and electronic components on silicon chips.
    Chip assembly is a painstaking process in which layers of different materials are deposited on a wafer of silicon, and patterns are etched into them. Inserting a new material into this process is difficult: it has to be able to chemically bond to the layers above and below it, and depositing it must be possible at the temperatures and in the chemical environments suitable to the other materials.
    The materials used in today's lasers, such as gallium arsenide, are "all tough fits," says Tremont Miao, a marketing director at Massachusetts-based Analog Devices Semiconductor. "They're all challenging integrations." As a consequence, the lasers have to be constructed separately and then grafted onto the chips, which is more expensive and time-consuming than building them directly on silicon would be. Moreover, gallium arsenide is much more expensive than silicon in the first place.
    Integrating germanium into the manufacturing process, however, is something that almost all major chip manufacturers have already begun to do, since the addition of germanium increases the speed of silicon chips. "We and lots of other people know how to do that," Miao says.
    Unchanneled energies
    Gallium arsenide, silicon, and germanium are all examples of semiconductors, the type of material used in virtually all modern electronics. Lasers made from semiconductors convert the energy of electrons -- particles of charge -- into photons -- particles of light. Semiconductors come in two varieties: those with direct band gaps, like gallium arsenide, and those with indirect band gaps, like germanium and silicon. According to Jurgen Michel, principal research associate in the Electronic Materials Research Group and primary investigator on the germanium-laser project, "There was an opinion in the scientific area that indirect-band-gap semiconductors will never lase" -- that is, produce laser light. "That's just what you teach in classes," says Lionel Kimerling, the Thomas Lord Professor of Materials Science and Engineering, who leads the group.
    In a semiconductor crystal, an excited electron -- one that's had energy added to it -- will break free and enter the so-called conduction band, where it can move freely around the crystal. But in fact, an electron in the conduction band can be in one of two states. If it's in the first state, and it falls out of the conduction band, it will release its extra energy as a photon. If it's in the second state, it will release its energy in other ways, such as heat.
    In direct-band-gap materials, the first state -- the photon-emitting state -- is a lower-energy state than the second state; in indirect-band-gap materials, it's the other way around. An excited electron will naturally occupy the lowest-energy state it can find. So in direct-band-gap materials, excited electrons tend to go into the photon-emitting state, and in indirect-band-gap materials, they don't.
    Bridging the gap
    In a forthcoming ** in the journal Optics Letters, Kimerling, Michel and three other researchers in the group -- postdoc Jifeng Liu, the lead author on the **, and grad students Xiaochen Sun and Rodolfo Camacho-Aguilera -- describe how they coaxed excited germanium electrons into the higher-energy, photon-emitting state.
    Their first strategy is a technique, common in chip manufacturing, called "doping," in which atoms of some other element are added to a semiconductor crystal. The group doped its germanium with phosphorous, which has five outer electrons. Germanium has only four outer electrons, "so each phosphorous gives us an extra electron," Kimerling says. The extra electron fills up the lower-energy state in the conduction band, causing excited electrons to, effectively, spill over into the higher-energy, photon-emitting state.
    According to the group's theoretical work, phosphorous doping "works best at 1020 atoms per cubic centimeter" of germanium, Kimerling explains. So far, the group has developed a technique that can add 1019 phosphorous atoms to each cubic centimeter of germanium, "and we already begin to see lasing," Kimerling says.
    The second strategy was to lower the energy difference between the two conduction-band states so that excited electrons would be more likely to spill over into the photon-emitting state. The researchers did that by adapting another technique common in the chip industry: they "strained" the germanium -- or pried its atoms slightly farther apart than they would be naturally -- by growing it directly on top of a layer of silicon. Both the silicon and the germanium were deposited at high temperatures. But silicon doesn't contract as much as germanium when it cools. The atoms of the cooling germanium tried to maintain their alignment with the silicon atoms, so they ended up farther apart than they would ordinarily be. Changing the angle and length of the bonds between germanium atoms also changed the energies required to kick their electrons into the conduction band. "The ability to grow germanium on silicon is a discovery of this group," says Kimerling, "and the ability to control the strain of those germanium films on silicon is a discovery of this group."
    "High-speed optical circuits like germanium in general," says Miao. "That's a good marriage and a good combination. So their laser research is very, very promising." Miao points out that the germanium lasers need to become more power-efficient before they're a practical source of light for optical communications systems. "But on the other hand," he says, "the promise is exciting, and the fact that they got germanium to lase at all is very exciting."
    zan
    转播转播0 分享淘帖0 分享分享0 收藏收藏0 支持支持1 反对反对0 微信微信
    第一次用linux登录madio,纪念一下
    郭曼丽 实名认证       

    1

    主题

    4

    听众

    520

    积分

    升级  73.33%

    该用户从未签到

    自我介绍
    200 字节以内

    不支持自定义 Discuz! 代码

    群组数学建模

    回复

    使用道具 举报

    a^a 实名认证       

    0

    主题

    3

    听众

    61

    积分

    升级  58.95%

    该用户从未签到

    自我介绍
    我因为梦想而忙碌
    回复

    使用道具 举报

    legan 实名认证       

    9

    主题

    4

    听众

    1376

    积分

    升级  37.6%

  • TA的每日心情
    开心
    2013-11-7 15:01
  • 签到天数: 13 天

    [LV.3]偶尔看看II

    新人进步奖

    回复

    使用道具 举报

    32

    主题

    6

    听众

    1077

    积分

  • TA的每日心情
    开心
    2011-12-15 19:30
  • 签到天数: 1 天

    [LV.1]初来乍到

    自我介绍
    活泼开朗,数学是兴趣,不是专业

    新人进步奖

    回复

    使用道具 举报

    525

    主题

    10

    听众

    4072

    积分

    升级  69.07%

  • TA的每日心情
    奋斗
    2015-1-3 17:18
  • 签到天数: 6 天

    [LV.2]偶尔看看I

    自我介绍
    学习中!

    优秀斑竹奖 元老勋章 新人进步奖 最具活力勋章

    群组Matlab讨论组

    群组C 语言讨论组

    群组每天多学一点点

    群组数学趣味、游戏、IQ等

    群组南京邮电大学数模协会

    回复

    使用道具 举报

    525

    主题

    10

    听众

    4072

    积分

    升级  69.07%

  • TA的每日心情
    奋斗
    2015-1-3 17:18
  • 签到天数: 6 天

    [LV.2]偶尔看看I

    自我介绍
    学习中!

    优秀斑竹奖 元老勋章 新人进步奖 最具活力勋章

    群组Matlab讨论组

    群组C 语言讨论组

    群组每天多学一点点

    群组数学趣味、游戏、IQ等

    群组南京邮电大学数模协会

    回复

    使用道具 举报

    0

    主题

    3

    听众

    339

    积分

    升级  13%

    该用户从未签到

    自我介绍
    冲刺美国赛

    群组数学建模

    群组ACM算法讨论组

    回复

    使用道具 举报

    olh2008 实名认证       

    88

    主题

    42

    听众

    1万

    积分

    船长

  • TA的每日心情
    开心
    2018-9-1 14:36
  • 签到天数: 86 天

    [LV.6]常住居民II

    邮箱绑定达人 优秀斑竹奖 新人进步奖 发帖功臣 最具活力勋章 元老勋章 原创写作奖 风雨历程奖

    群组Latex研学群

    群组数学建模

    群组Mathematica研究小组

    群组LINGO

    群组Matlab讨论组

    目前大幅度地提高光子计算机的运算能力是当前科研工作面临的攻关课题。光子计算机的问世和进一步研制、完善,将为人类跨向更加美好的明天,提供无穷的力量。
    生命,到最后总能成诗……
    回复

    使用道具 举报

    6

    主题

    5

    听众

    32

    积分

    升级  28.42%

    该用户从未签到

    自我介绍
    王勇,一个十分大众化的名字

    新人进步奖

    回复

    使用道具 举报

    您需要登录后才可以回帖 登录 | 注册地址

    qq
    收缩
    • 电话咨询

    • 04714969085
    fastpost

    关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

    手机版|Archiver| |繁體中文 手机客户端  

    蒙公网安备 15010502000194号

    Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

    GMT+8, 2024-6-17 20:03 , Processed in 1.902416 second(s), 106 queries .

    回顶部