- 在线时间
- 53 小时
- 最后登录
- 2017-7-6
- 注册时间
- 2009-8-5
- 听众数
- 6
- 收听数
- 0
- 能力
- 0 分
- 体力
- 13389 点
- 威望
- 56 点
- 阅读权限
- 200
- 积分
- 5598
- 相册
- 0
- 日志
- 1
- 记录
- 5
- 帖子
- 1693
- 主题
- 39
- 精华
- 11
- 分享
- 0
- 好友
- 113

TZB狙击手
升级   11.96% TA的每日心情 | 奋斗 2015-10-16 12:37 |
---|
签到天数: 28 天 [LV.4]偶尔看看III
- 自我介绍
- 香茗一壶,斟满了心田,溢过了心坎,茗香遍体……涛声一片,传遍了脑海,浸湿了耳畔,涛溅全身……
群组: 东北三省联盟 群组: Matlab讨论组 群组: 数学建模 群组: LINGO 群组: 数学建模保研联盟 |
2#
发表于 2010-5-26 13:17
|只看该作者
|
|邮箱已经成功绑定
二、几何学范畴 : }1 I! i9 G3 X5 C
) i- j& E* N0 P# U$ k5 U6 b
1、初等几何! p- z/ m6 \. S+ V1 |# d) R
( L+ W" x) ]/ I- ^- a
在希腊语中,“几何学”是由“地”与“测量”合并而来的,本来有测量土地的含义,意译就是“测地术”。“几何学”这个名词,系我国明代数学家根据读音译出的,沿用至今。
, M% ?+ x" `# N7 \3 m& M, S G3 \& N( c0 `- |) o" ]
现在的初等几何主要是指欧几里得几何,它是讨论图形(点、线、面、角、圆等)在运动下的不变性质的科学。例如,欧氏几何中的两点之间的距离,两条直线相交的交角大小,半径是r的某一圆的面积等都是一些运动不变量。
8 |1 w* j/ v/ A* B: U/ a- @8 U0 G% o2 Q7 U4 G3 M* X
初等几何作为一门课程来讲,安排在初等代数之后;然而在历史上,几何学的发展曾优先于代数学,它主要被认为是古希腊人的贡献。
( @+ f. v9 l; Q3 i. [
& _+ R8 j9 J3 W& Q' |) `9 b 几何学舍弃了物质所有的其它性质,只保留了空间形式和关系作为自己研究的对象,因此它是抽象的。这种抽象决定了几何的思维方法,就是必须用推理的方法,从一些结论导出另一些新结论。定理是用演绎的方式来证明的,这种论证几何学的代表作,便是公元前三世纪欧几里得的《原本》,它从定义与公理出发,演绎出各种几何定理。& p2 A2 v# x4 E! T, a
' w8 r/ Z5 h: R7 `: H4 F 现在中学《平面三角》中关于三角函数的理论是15世纪才发展完善起来的,但是它的一些最基本的概念,却早在古代研究直角三角形时便己形成。因此,可把三角学划在初等几何这一标题下。
; I" B( v4 u: ^( W& k9 D9 m9 ]. }0 ]1 m, G7 ^
古代埃及、巴比伦、中国、希腊都研究过有关球面三角的知识。公元前2世纪,希帕恰斯制作了弦表,可以说是三角的创始人。后来印度人制作了正弦表;阿拉伯的阿尔·巴塔尼用计算sinθ值的方法来解方程,他还与阿布尔·沃法共同导出了正切、余切、正割、余割的概念;赖蒂库斯作了较精确的正弦表,并把三角函数与圆弧联系起来。
# w; R" k: A8 ]% e
' n" X5 f! E) q$ z8 U 由于直角三角形是最简单的直线形,又具有很重要的实用价值,所以各文明古国都极重视它的研究。我国《周髀算经》一开始就记载了周朝初年(约公元前1100年左右)的周公与学者商高的对话,其中就谈到“勾三股四弦五”,即勾股定理的特殊形式;还记载了在周公之后的陈子,曾用勾股定理和相似图形的比例关系,推算过地球与太阳的距离和太阳的直径,同时为勾股定理作的图注达几十种之多。在国外,传统称勾股定理为毕达哥拉斯定理,认为它的第一个一致性的证明源于毕氏学派(公元前6世纪),虽然巴比伦人在此以前1000多年就发现了这个定理。到现在人们对勾股定理已经至少提供了370种证明。( _ c, n* I+ p. Z: F0 @
; _) ^: ?7 {/ I9 H 19世纪以来,人们对于关于三角形和圆的初等综合几何,又进行了深入的研究。至今这一研究领域仍然没有到头,不少资料已引申到四面体及伴随的点、线、面、球。
" {# v3 Z6 c0 ~8 s; U! y, M
" ^, Y& L2 u2 [2 r9 i" p! ]' W0 s3 e0 Z) _0 p
2、射影几何" c) W" ?+ ^' ?" L7 m
: A: s' K( m4 u: c( S
射影几何学是一门讨论在把点射影到直线或平面上的时候,图形的不变性质的一门几何学。幻灯片上的点、线,经过幻灯机的照射投影,在银幕上的图画中都有相对应的点线,这样一组图形经过有限次**以后,变成另一组图形,这在数学上就叫做射影对应。射影几何学在航空、摄影和测量等方面都有广泛的应用。% S+ ^) k! H1 _0 Q. V2 b0 H
7 D x2 R7 Y( ~- Z
射影几何是迪沙格和帕斯卡在1639年开辟的。迪沙格发表了—本关于圆维曲线的很有独创性的小册子,从开普勒的连续性原理开始,导出了许多关于对合、调和变程、透射、极轴、极点以及**的基本原理,这些课题是今天学习射影几何这门课程的人所熟悉的。年仅16岁的帕斯卡得出了一些新的、深奥的定理,并于9年后写了一份内容很丰富的手稿。18世纪后期,蒙日提出了二维平面上的适当投影表达三维对象的方法,因而从提供的数据能快速算出炮兵阵地的位置,避开了冗长的、麻烦的算术运算。6 o3 B- A1 b& ^3 c
8 Q6 l1 O2 N' t
射影几何真正独立的研究是由彭赛勒开创的。1822年,他发表了《论图形的射影性质》一文,给该领域的研究以巨大的推动作用。他的许多概念被斯坦纳进一步发展。1847年,斯陶特发表了《位置几何学》一书,使射影几何最终从测量基础中解脱出来。, A! S" P8 x' q
6 Z1 M7 P' @1 }, m
后来证明,采用度量适当的射影定义,能在射影几何的范围内研究度量几何学。将一个不变二次曲线添加到平面上的射影几何中,就能得到传统的非欧几何学。在19世纪晚期和20世纪初期,对射影几何学作了多种公设处理,并且有限射影几何也被发现。事实证明,逐渐地增添和改变公设,就能从射影几何过渡到欧几里得几何,其间经历了许多其它重要的几何学。
) w, R( S9 n, Y
: ?2 J* i8 E4 W! l
7 H8 H. l2 p# y+ F 3、解析几何
! f) q( R0 q3 p0 B1 I' X3 n
- R" R5 R8 L7 T, b 解析几何即坐标几何,包括平面解析几何和立体解析几何两部分。解析几何通过平面直角坐标系和空间直角坐标系,建立点与实数对之间的一一对应关系,从而建立起曲线或曲面与方程之间的一一对应关系,因而就能用代数方法研究几何问题,或用几何方法研究代数问题。
4 l. Q3 K6 }" _& {4 `) R# N
" o0 W1 Y3 f6 i# E- J a3 v2 j 在初等数学中,几何与代数是彼此独立的两个分支;在方法上,它们也基本是互不相关的。解析几何的建立,不仅由于在内容上引入了变量的研究而开创了变量数学,而且在方法上也使几何方法与代数方法结合起来。9 K% W. ^, F, ]6 F! L( T, ~/ i/ O" L
9 p n& m, [+ V3 i1 d 在迪沙格和帕斯卡开辟了射影几何的同时,笛卡儿和费尔马开始构思现代解析几何的概念。这两项研究之间存在一个根本区别:前者是几何学的一个分支,后者是几何学的一种方法。
* r5 ~5 U) }6 E. B: D+ }- \6 U; \7 Q% s, b; {
1637年,笛卡儿发表了《方**》及其三个附录,他对解析几何的贡献,就在第三个附录《几何学》中,他提出了几种由机械运动生成的新曲线。在《平面和立体轨迹导论》中,费尔马解析地定义了许多新的曲线。在很大程度上,笛卡儿从轨迹开始,然后求它的方程;费尔马则从方程出发,然后来研究轨迹。这正是解析几何基本原则的两个相反的方面,“解析几何”的名称是以后才定下来的。
3 O( a( {9 G* _, o( {+ L9 C/ u3 }9 O
这门课程达到现在课本中熟悉的形式,是100多年以后的事。象今天这样使用坐标、横坐标、纵坐标这几个术语,是莱布尼兹于1692年提出的。1733年,年仅18岁的克雷洛出版了《关于双重曲率曲线的研究》一书,这是最早的一部空间解析几何著作。1748年,欧拉写的《无穷分析概要》,可以说是符合现代意义的第一部解析几何学教程。1788年,拉格朗日开始研究有向线段的理论。1844年,格拉斯曼提出了**空间的概念,并引入向量的记号。于是**解析几何出现了。' t, v1 B" ?& V: M1 e
# w: j4 t |) P3 b
解析几何在近代的发展,产生了无穷维解析几何和代数几何等一些分支。普通解析几何只不过是代数几何的一部分,而代数几何的发展同抽象代数有着密切的联系。
F9 X! ]* }3 U
' k+ F7 @ U8 L+ U7 z0 Q5 D. Q; }4 T4 T, V+ _1 l. R' I! `
4、非欧几何 v0 x$ E) p: a" `
8 h/ v3 d0 e: C+ L 非欧几何有三种不同的含义:狭义的,单指罗氏(罗巴切夫斯基)几何;广义的,泛指一切和欧氏(欧几里得)几何不同的几何;通常意义的,指罗氏几何和黎曼几何。8 C- D$ N6 Y" {. T: Z
. s5 {- Z( n y* r 欧几里得的第5公设(平行公设)在数学史上占有特殊的地位,它与前4条公设相比,性质显得太复杂了。它在《原本》中第一次应用是在证明第29个定理时,而且此后似乎总是尽量避免使用它。因此人们怀疑第五公设的公理地位,并探索用其它公理来证明它,以使它变为一条定理。在三千多年的时间中,进行这种探索并有案可查的就达两千人以上,其中包括许多知名的数学家,但他们都失败了。1 Y' H! K3 B( C- P
4 B" h/ Z3 S/ W) T: p 罗巴契夫斯基于1826年,鲍耶于1832年发表了划时代的研究结果,开创了非欧几何。在这种几何中,他们假设“过不在已知直线上的一点,可以引至少两条直线平行于已知直线”,用以代替第五公设,同时保留了欧氏几何的其它公设。
: t8 Y4 p. m6 R8 J' F N
1 L( V; }! v8 O1 j/ q7 e 1854年,黎曼推出了另一种非欧几何。在这种几何中,他假设“过已知直线外一点,没有和已知直线平行的直线可引”,用以代替第5公设,同时保留了欧氏几何的其它公设。1871年,克莱因把这3种几何:罗巴契夫斯基—鲍耶的、欧几里得的和黎曼的分别定名为双曲几何、抛物几何和椭圆几何。% q6 K. L8 T- y! x* R+ a) U7 x
0 Y+ M6 j# X8 p. c6 R 非欧几何的发现不仅最终解决了平行公设的问题——平行公设被证明是独立于欧氏几何的其它公设的,而且把几何学从其传统模型中解放出来,创造了许多不同体系的几何的道路被打开了。
: G' z& Q' j- c( H; P: j, w5 e6 T; m/ m, o [( a) G6 J
1854年,黎曼发表了“关于作为几何学基础的假设的讲演”。他指出:每种不同的(两个无限靠近的点的)距离公式决定了最终产生的空间和几何的性质。1872年,克莱因建立了各种几何系统按照不同变换群不变量的分类方法。
" [& Q! ]) b9 i8 k% A _' Y) \( ?' a' Q4 V& N
19世纪以后,几何空间概念发展的另一方向,是按照所研究流形的微分几何原则的分类,每一种几何都对应着一种定理系统。1899年,希尔伯特发表了《几何基础》一书,提出了完备的几何公理体系,建立了欧氏几何的严密的基础,并给出了证明一个公理体系的相容性(无矛盾性)、独立性和完备性的普遍原则。按照他的观点,不同的几何空间乃是从属于不同几何公理要求的元素集合。欧氏几何和非欧几何,在大量的几何系统中,只不过是极其特殊的情形罢了。; F5 H& q- Z9 F3 Y7 v0 x% h0 i
0 J, x' l( z, z. j
7 K3 O: y; \* g1 O4 C% |
5、拓扑学
) G8 ?. b. E0 {. }6 ]! ?
' w" X- ]1 b6 D R 1736年,欧拉发表论文,讨论哥尼斯堡七桥问题。他还提出球面三角形剖分图形顶点、边、面之间关系的欧拉公式,这可以说是拓扑学的开端。
7 _$ J( Q- u6 D
! Z X, \: S: ]8 z; ~ 庞加莱于1895~1904年建立了拓扑学,采用代数组合的方法研究拓扑性质。他把欧拉公式推广为欧拉—庞加莱公式,与此有关的理论现在称为同调理论和同伦理论。以后的拓扑学主要按照庞加莱的设想发展。
1 k1 i8 D. L( a
7 u# V3 u) T) z& z+ e6 E. q8 L 拓扑学开始是几何学的一个分支,在二十世纪它得到了极大的推广。1906年,弗雷歇发表博士论文,把函数作为一个“点”来看,把函数收敛描绘成点的收敛,这就把康托的点集论和分析学的抽象化联系起来了。他在函数所构成的集合中引入距离的概念,构成距离空间,展开了线性距离空间的理论。在这个基础上,产生了点集拓扑学。在豪斯道夫的《点集论纲要》一书中,出现了更一般的点集拓扑学的完整想法。第二次世界大战后,把分析引进拓扑,发展了微分拓扑。7 W6 P- |+ \ e" s b/ _/ U$ l
4 Z7 @5 A- l% e9 O! z7 _ 现在的拓扑学可以粗略地定义为对于连续性的数学研究。任何事物的集合都能在某种意义上构成拓扑空间,拓扑学的概念和理论已基本完组成为数学的基础理论之一,渗入到各个分支,并且成功地应用于电磁学和物理学的研究。 |
|