这是一个隐含在http://www.madio.net/thread-202136-1-1.html里的问题 本帖最后由 1300611016 于 2014-2-27 06:42 编辑 这是一个古老而崭新的问题,P(0)与P(1)无论那个是最小的质数,都将衍生出新的问题。如果P(0)是最小质数,那么结论将很有趣。 本帖最后由 1300611016 于 2014-3-2 02:41 编辑 首先,如果P(0)是是最小质数,那么结论将很有趣。由于下面不等式(1)·(2),【不等式(1)·(2)详细情况在一楼的网址里有】 (1)2P(n)≥P(n+1) (2)2P(n)≤P(2n+1) 可以得出2P(0)=P(1)。此时可以得出P(0)=1;P(1)=2.这个结论多少有点让人意外。 这个结论,有悖与时下主流最小质数的认识。展开讨论,将是一场全新的尝试。 再说说题外话,讨论本帖成为可能是由于十几年前,数学上将0并入自然数集,确切的时间我不记得了,因为没有人通知我,我只知道结果。然而这并不影响有数学家反对‘0并入自然数集’。 第二,假设P(0)不存在即P(1)是最小质数,这将导致与质数的性质拓矛盾。 本帖最后由 1300611016 于 2014-3-11 11:18 编辑 P(1)是最小质数,这将导致与质数的性质拓矛盾。该结论抽象,质数的性质拓在1楼的网址有介绍。我用折纸法演示:取一条纸带将自然数由小到大排列在上面一直到2x(x足够大),第一步操作,将纸带对折,由质数性质拓知【0,x】区间中的质数个数大于等于(x,2x】区间中的质数个数。第二步操作,(1)当x为偶数时,重复第一步操作,(2)当x为奇数时,将x增加为x+1重复第一步操作;如此不断的操作每次所得纸带近0端所含质数个数总是大于等于另一端质数个数。我们总能得到【0,2】区间。此时,要不要将纸条对折?答案是肯定的,因为对折后每个区间都有非0自然数分布。由于题设P(1)是最小质数,故与质数的性质拓矛盾。所以题设P(1)是最小质数错误。 本帖最后由 1300611016 于 2014-3-5 04:10 编辑 综上所得,第一假设成立,P(0)是是最小质数。即P(0)=1;P(1)=2. 本帖最后由 1300611016 于 2014-3-3 15:46 编辑 这一结论成立,会导致一系列变化。所有的教材,教科书都将为之做出调整。______; 本帖最后由 1300611016 于 2014-3-7 09:14 编辑 以上,所做探讨的前提是在同偶质数对分布表存在以及质数性质拓存在的前提下。而这个前提不会因为我而存在,也不会因为他而消亡。 本帖的意义是“0并入自然数集”这一事件在数论范围内的延续。但这不是全部,这一方向上的探讨可以修成更多的正果。期待网友共同努力。 本帖最后由 1300611016 于 2014-3-9 12:20 编辑 在http://www.madio.net/thread-202136-1-1.html里不等式:P(n)-1≤n(n-1)/2+1应调整为P(n)≤n(n+1)/2+1。那么‘哥德巴赫猜想’如果要与时俱进的话可以表述为:任意非零偶数都可以用一组质数和表示,当偶数大于2时至少有两组这样的质数对。对这两组质数对展开讨论将是‘偶数的形’贴所要讨论的 |
Powered by Discuz! X2.5 © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 ) 论坛法律顾问:王兆丰
GMT+8, 2025-7-6 01:04 , Processed in 0.448003 second(s), 32 queries .