, ~9 d, p, q2 r4 u, Z1 M3 s; k
( o; G- [0 Z5 [. l! ]
4、Python代码 7 }3 O6 l9 S& V#-*- coding:utf-8 -*- ( k2 c h1 I4 ?, h, F5 b3 ]( l# x! V* i
import random; ^0 g f2 l+ r' H
import math * B" _1 [" g# g4 |" Xfrom operator import itemgetter ! k, M7 D, ~& d( V0 \1 l# `& R* J/ t
class Gene:8 b+ b; W* B5 ]" a) R5 D; X, O
''' / J8 a" N- W4 D8 T4 k: R6 j+ I This is a class to represent individual(Gene) in GA algorithom $ t5 J, E! m5 n# D+ [ each object of this class have two attribute: data, size6 p" D4 K2 a; V. s, q. N# ]: E6 ?! c
''' : }. M$ ], p# r, R def __init__(self,**data):2 Z. |& p* K7 \1 N( N3 n
self.__dict__.update(data) Y9 {4 o6 _+ Q& n+ G1 N5 [
self.size = len(data['data'])#length of gene4 L2 x3 w9 Y3 H
( H* N: L5 S& b4 H. S$ I; ? 3 a! @/ U% u) Y: b$ q2 f$ B4 c: Wclass GA: 8 ^2 t; V; e+ `+ [ ''' & y9 v# D Y2 j, } This is a class of GA algorithm. - {3 _& F* f S8 C& Q/ [ ''' 6 e8 i7 B4 {$ h0 }' z& C def __init__(self,parameter):( `! A, z" g- q3 O R+ ~' g3 ^
''' 3 G9 L; u& q& u' y! O, E0 J Initialize the pop of GA algorithom and evaluate the pop by computing its' fitness value . 6 l' A3 `5 K& p1 L; k The data structure of pop is composed of several individuals which has the form like that:1 G5 }, t3 u: u, N
$ e; I& w, I4 _* C" Q' w
{'Gene':a object of class Gene, 'fitness': 1.02(for example)}8 j2 |! C5 w6 ]/ {. r
Representation of Gene is a list: [b s0 u0 sita0 s1 u1 sita1 s2 u2 sita2]6 v5 A M( I4 U$ W/ r
4 t' S1 v- E8 C2 B
''' - t& R! y3 J4 c6 | #parameter = [CXPB, MUTPB, NGEN, popsize, low, up]/ N7 L* a4 x7 i% T
self.parameter = parameter 1 Y0 E3 ^7 M. J C- p( `$ O" @8 p $ ~* c6 s9 d! b( }7 J low = self.parameter[4]& s; W, [1 t ]! w% w* s
up = self.parameter[5] ( I+ d' {! l5 M - c6 x7 v. E7 {. u self.bound = []- ]. z+ B" K$ c0 H. U, }
self.bound.append(low)% I* D+ ?8 v' T1 i5 {( N/ e
self.bound.append(up) n* N& i+ c. I
* ]; R5 w2 R: |3 j/ q) ^. e pop = [] - X: p* V' L! g8 }! F for i in range(self.parameter[3]):- t! L ]# `: K
geneinfo = [] 7 B; s$ P) o" t" e9 X, Q: K, { for pos in range(len(low)):7 N7 {7 Q+ c! v' H1 f
geneinfo.append(random.uniform(self.bound[0][pos], self.bound[1][pos]))#initialise popluation 1 T) ^) Q# `& p9 N# [6 X3 ~' J3 I; K% s/ D; j+ p7 r
fitness = evaluate(geneinfo)#evaluate each chromosome ; B4 e7 U1 U3 O, Z! a% l9 _/ X3 | pop.append({'Gene':Gene(data = geneinfo), 'fitness':fitness})#store the chromosome and its fitness' R0 i# U! D. d5 |9 D1 r. @. \
: r% {1 H2 m, S3 R/ ?4 [- [ self.pop = pop5 Q+ S2 S" `; C4 H
self.bestindividual = self.selectBest(self.pop)#store the best chromosome in the population7 L( O1 p: v/ Z. S" {3 h% q
( n6 A A2 o( _! }; Q def selectBest(self, pop):* `' q' u" U: U/ i3 R
'''- Q2 G/ I! v& ^6 `# e
select the best individual from pop/ @8 I! u) j6 N$ q7 L* o$ n
'''! d- \; P3 L' W0 \$ G5 U. R
s_inds = sorted(pop, key = itemgetter("fitness"), reverse = False) , f( k$ N: O3 R: J return s_inds[0] ) Q, S8 M0 P7 |3 d% ] & [8 w' n* t5 i8 w def selection(self, individuals, k):2 E" |" z: l1 N5 ~" R( O" ?4 ]
''' 2 r6 Y$ H. b! ]7 s3 |" X, `5 y# j select two individuals from pop. P4 d7 o3 K/ B- _
'''; U; U/ `" N( i; g# f/ {, p- D3 x
s_inds = sorted(individuals, key = itemgetter("fitness"), reverse=True)#sort the pop by the reference of 1/fitness : p# \! K8 v+ _" V6 N sum_fits = sum(1/ind['fitness'] for ind in individuals) #sum up the 1/fitness of the whole pop8 w* c5 v# |1 ]- ^* I
( q2 R5 N; g2 V) O0 m
chosen = [] $ ^! l! P7 F: R for i in xrange(k):; ~- d* C: Z$ r
u = random.random() * sum_fits#randomly produce a num in the range of [0, sum_fits]' r; ]7 r. S; k: ]6 a
sum_ = 0: n% d. M7 _1 B6 ~9 w* i
for ind in s_inds: 5 N" M9 Y& N) {4 ?! L" Z3 | sum_ += 1/ind['fitness']#sum up the 1/fitness 3 l: \" T4 K6 q( P/ R$ ? if sum_ > u: , P' ?0 X% f; L( `- b+ ` #when the sum of 1/fitness is bigger than u, choose the one, which means u is in the range of [sum(1,2,...,n-1),sum(1,2,...,n)] and is time to choose the one ,namely n-th individual in the pop' T; q9 E. s6 x9 e
chosen.append(ind)% \1 j: `5 P4 w- h
break + _6 a( `' J' {9 G; t0 M' p " M+ G1 S: j* k/ X- b! S J, }% N# q return chosen + T9 Z; Y$ A6 O. F% M: C: Q' S 7 ^$ w I: z% V, \/ u' R7 { / s0 j2 A5 b4 x def crossoperate(self, offspring): g. h& e% q6 q9 D5 a
''' " _7 D3 Y0 z" H5 a5 w" w- M cross operation 6 ?" o* B# s3 ^4 \2 ] ''' p" ], D( i- Y+ s) C6 ], }( w- B
dim = len(offspring[0]['Gene'].data)6 U$ Y( [% E" ~9 m( m" T
7 h" y* N) z9 G& j' X& j& n/ a# i geninfo1 = offspring[0]['Gene'].data#Gene's data of first offspring chosen from the selected pop( ?7 @8 x% z: g0 `
geninfo2 = offspring[1]['Gene'].data#Gene's data of second offspring chosen from the selected pop ' R/ J# j* g& x# ] 5 h3 D( M6 e! ]) c6 w pos1 = random.randrange(1,dim)#select a position in the range from 0 to dim-1, 4 G* ?# S/ Z" L1 m. N: b
pos2 = random.randrange(1,dim)2 L6 r. N5 a3 v& R5 E/ C
4 ^! r' U; J( ?, ]$ l
newoff = Gene(data = [])#offspring produced by cross operation 9 U- c7 a9 P* K8 ?" I, o `: @ temp = [] 2 B& P3 l- b" i( K for i in range(dim):1 H H2 O9 V! V' k) g; E! R
if (i >= min(pos1,pos2) and i <= max(pos1,pos2)): / a% g' R* `+ |: l9 B! A temp.append(geninfo2) # f% ^# m7 I& A T* A9 g #the gene data of offspring produced by cross operation is from the second offspring in the range [min(pos1,pos2),max(pos1,pos2)]% s& V/ f- l5 k z! c% g" H
else: 2 R% J/ Y' {& S0 `1 |; i3 N0 o temp.append(geninfo1) 5 t+ Y5 L8 b0 @! @( A/ X, |9 A #the gene data of offspring produced by cross operation is from the frist offspring in the range [min(pos1,pos2),max(pos1,pos2)]( g& R5 L8 K3 L4 x5 L1 D
newoff.data = temp 0 z6 E% c" |0 l5 S) [% \! F" ` 8 N' z7 W! a* S% O return newoff2 d7 V. S" ~& ~+ F" \' R
+ j4 x. d7 v' M! R: {/ T2 @ $ y6 A' G( h3 Y5 J6 e def mutation(self, crossoff, bound): & ~+ N' f0 `4 ?3 F9 | ''' H: S8 C/ e& _# s/ n: {6 l0 U9 { mutation operation1 ^+ ~3 }, `: s Q; x
''' ( s, N, Z- o; N) p7 I" D# i5 G |9 R! }
dim = len(crossoff.data)$ H3 o1 h8 L0 v2 {6 k( |* W
9 C$ M8 R) _# t
pos = random.randrange(1,dim)#chose a position in crossoff to perform mutation.' V u" ?* C. z3 E% E2 A d
{( ^: Y" d+ `+ d
crossoff.data[pos] = random.uniform(bound[0][pos],bound[1][pos])7 ?7 Y( k9 K! F8 Q7 f; O
return crossoff ' b% w8 x$ J( I4 U( L: T: i: y# L# i$ [0 n: A+ K; I
def GA_main(self):2 v4 L/ R( i: D ?% C
'''! M, N8 n+ B7 i- Y. n; S2 K: ~/ I
main frame work of GA 9 m Q% v" z) p0 s7 l- q ''' 5 u& M. g( M1 O1 H) A2 T) r 7 p0 F- {" J# p" v) A popsize = self.parameter[3] ( k) A' ^! @4 G # q8 d0 S" s, U, U print("Start of evolution") 8 u" v' n: |9 d2 I! o6 c, b7 U5 E( |% H( [
# Begin the evolution * Q& k: M, i* S$ ?5 c; O: o for g in range(NGEN):* ?# C3 U, m6 O2 |
9 a( `. y# c$ A4 R0 S* D6 A print("-- Generation %i --" % g) $ K) f# s2 r. Z+ w6 ]- w" _% Q$ \# ^6 `; C4 ?, ^6 r* u
#Apply selection based on their converted fitness! x- C- c, Q5 ]) r
selectpop = self.selection(self.pop, popsize) : e7 I8 x3 \2 E7 B! N" C6 M6 \$ ~0 y1 x& D
nextoff = [] % U' b$ \( L+ a/ S while len(nextoff) != popsize: 3 j/ i2 A4 X6 B8 \/ g* N: J
# Apply crossover and mutation on the offspring % ^: h. g- k! Z( l" [% G( T 9 P5 ~& j/ v! a # Select two individuals 9 h0 i3 m- p& P# D3 c offspring = [random.choice(selectpop) for i in xrange(2)]/ W- p$ f# Y5 ~2 a" i
- b& E2 a3 e3 o8 A
if random.random() < CXPB: # cross two individuals with probability CXPB , H" @. q! k; q crossoff = self.crossoperate(offspring)5 G( O! n. k# O
fit_crossoff = evaluate(self.xydata, crossoff.data)# Evaluate the individuals % {# v; o9 ` g" G* q
8 }1 q, O' N' p% }4 \ if random.random() < MUTPB: # mutate an individual with probability MUTPB( A4 B* h' i4 h- H4 S
muteoff = self.mutation(crossoff,self.bound) 8 ~4 f9 e4 g/ M/ K$ C7 S+ x0 w" g( W fit_muteoff = evaluate(self.xydata, muteoff.data)# Evaluate the individuals 7 S/ x& L5 i' i0 l8 V8 C nextoff.append({'Gene':muteoff,'fitness':fit_muteoff})5 w- G, p% E5 E8 O
+ j+ ^; j0 C! G$ r
# The population is entirely replaced by the offspring3 }9 g/ i2 ?6 M
self.pop = nextoff # q H) M5 H4 w g! m5 h : l- ]% H& O( t9 ^ # Gather all the fitnesses in one list and print the stats ; W( ?3 W" M" B' D) O& ] fits = [ind['fitness'] for ind in self.pop]# @) A. w) g6 Y. W8 ~; G. [" g
% j9 F& D3 G/ T$ E
length = len(self.pop) . d1 [7 O0 C. K4 \: O* j mean = sum(fits) / length ; Z. \* N$ f8 c* d a) |& v sum2 = sum(x*x for x in fits) : g5 H' a) S. o% K std = abs(sum2 / length - mean**2)**0.51 Z" Z% o+ t) d9 ~' Z
best_ind = self.selectBest(self.pop) 5 c, z& P( I0 S( z% c& E: u$ \- }9 \+ k* `
if best_ind['fitness'] < self.bestindividual['fitness']: & k" S2 _' Z: p( m self.bestindividual = best_ind g4 M: s# P& V' m6 _8 n% k$ O
9 J9 Z& U/ _% g' W print("Best individual found is %s, %s" % (self.bestindividual['Gene'].data,self.bestindividual['fitness'])) 4 i7 Q5 N% _% Y# M print(" Min fitness of current pop: %s" % min(fits)) + n- E2 H% e I, h6 t& J. V print(" Max fitness of current pop: %s" % max(fits))6 ~7 q) I5 d. `: y' k2 V+ l
print(" Avg fitness of current pop: %s" % mean); I& m/ m, ~* l" H; [" f, U8 j
print(" Std of currrent pop: %s" % std)5 T- \ m" v6 B8 S
/ i8 j' T/ u9 r( F4 S p5 b1 ` print("-- End of (successful) evolution --") ( ~: u. y( N# Y* A2 u# m9 A3 W N( h- T. `' y# D$ t
if __name__ == "__main__": 7 L9 |& G( [5 i' i1 X 1 _! h+ ]6 L9 Q; V* N% t& R$ f% N# W CXPB, MUTPB, NGEN, popsize = 0.8, 0.3, 50, 100#control parameters ; R' |' Z+ Y# C+ A+ ^; {8 m" D+ Q! O# `0 T
up = [64, 64, 64, 64, 64, 64, 64, 64, 64, 64]#upper range for variables 1 o8 [5 m( h8 d4 v+ w7 x low = [-64, -64, -64, -64, -64, -64, -64, -64, -64, -64]#lower range for variables 5 A* s0 y& O Q parameter = [CXPB, MUTPB, NGEN, popsize, low, up]# K* N6 h1 F! z$ `
8 y6 I$ J4 H, N4 Y6 `' }7 [9 M+ r+ N run = GA(parameter)/ { V- C% ?0 w! ?& i* B$ [
run.GA_main()0 n1 A* _) _2 }. h0 s1 }
————————————————+ w/ o/ n# n, ?$ }3 d1 F# Y" z W. r
版权声明:本文为CSDN博主「bible_reader」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。 1 {; b! {+ j. {" U原文链接:https://blog.csdn.net/bible_reader/article/details/72782675 1 N& D% B6 p& ? 4 o8 m* J' y9 X 8 Z! y: J) n- o' H: G: S( Z