( |6 \6 y: o; M$ L- H6 A: z# v 8 X. v2 z. m8 i% Q) L7 W2 Z4、Python代码4 `! Y& k! z( c- [# c& m
#-*- coding:utf-8 -*-5 D: f' O/ G( k9 k3 c
: c4 m( H* k0 w1 [4 {2 E' Timport random ) |0 J8 ]4 B( ]; O5 C/ y& Fimport math6 x+ v5 R- B0 W. ?
from operator import itemgetter 1 O; P4 z, C3 B! H* o 5 t( s5 F& |! o0 L. C3 zclass Gene: 9 b( w t* `% w' V# x' I ''' 3 e$ x7 p+ Y+ o- O! [) [ This is a class to represent individual(Gene) in GA algorithom 7 Q3 ^& B7 U( K' G+ n0 Y each object of this class have two attribute: data, size & B. ]5 b' } Z$ K6 o ''' U/ S, G9 e2 G/ G7 ^) H' P1 X' A def __init__(self,**data):- M/ H, b0 I% P$ u) f; b
self.__dict__.update(data) 6 D8 t6 H: S0 l/ O7 l self.size = len(data['data'])#length of gene ; j3 L' Q6 A: U; Y1 W1 X' Q! @1 Y 4 L6 |9 ?1 r( }3 j# I* y/ N8 Q, M) K/ K( z# L Y' d: Q& c( @
class GA: / V& n% l( ~/ `9 Z- K/ N% P" m '''4 X+ V! v7 U; |+ }* Y) ~1 B$ ^' g
This is a class of GA algorithm. ! Z/ z! h9 n/ l; D7 f$ g6 |6 P '''" e3 z2 ~) [1 ~* s) _! {; d, h
def __init__(self,parameter): + w' s% p; r, u2 _ y! M5 A1 s0 O4 p ''' 4 a2 a, u$ }) ^0 N+ ? Initialize the pop of GA algorithom and evaluate the pop by computing its' fitness value .; z, J% D# J' l) l: L: A0 ]; E; S
The data structure of pop is composed of several individuals which has the form like that: ! T; e, X$ X! J+ s# a ) H& }" Z; A# X/ `3 s3 w {'Gene':a object of class Gene, 'fitness': 1.02(for example)}* z( ]6 \5 h, ~* `7 g ~) X
Representation of Gene is a list: [b s0 u0 sita0 s1 u1 sita1 s2 u2 sita2]* `% A) }! e1 A+ M
2 w/ ]0 @/ R6 ?9 A$ ]* m9 p
''') i4 k0 |- A6 T d* _
#parameter = [CXPB, MUTPB, NGEN, popsize, low, up]6 @2 k4 y* v" z, K9 v
self.parameter = parameter 4 Q3 |" [) g5 I9 R. W) ~0 f2 A! F2 u9 @; @) n7 g
low = self.parameter[4] 0 c; m2 x- ]- F; b4 t( q up = self.parameter[5] & i' W4 l; A3 B* e 2 Y( q/ @ r: b5 v/ y0 f self.bound = []4 ]' G( _+ i: M. S) ]( [( e
self.bound.append(low)* W1 T8 v4 V/ H; c# X3 t
self.bound.append(up)' E( {! h. Q# P: Z/ ^
" {- t4 X# G. [" p
pop = []3 ` E+ V# m+ }5 K) m
for i in range(self.parameter[3]):! l6 P- |; t7 g( ]3 I& i6 W
geneinfo = []% u, H, N$ y7 W1 \0 Q, z" s
for pos in range(len(low)): " G J% K) p' b. d geneinfo.append(random.uniform(self.bound[0][pos], self.bound[1][pos]))#initialise popluation " Q4 \. I( h( Y6 |" @2 I 1 W, I( ~9 R* [2 ?5 X( @. m0 g fitness = evaluate(geneinfo)#evaluate each chromosome - P' @2 @9 R) k. y) c1 ]( ^, R pop.append({'Gene':Gene(data = geneinfo), 'fitness':fitness})#store the chromosome and its fitness, f2 @! H* c$ }- d0 z
7 Z. @- F, ~1 B& o self.pop = pop 0 r" D2 s9 a! e9 l2 j8 N0 R self.bestindividual = self.selectBest(self.pop)#store the best chromosome in the population / C: q, [4 b: P3 a! \( O' G( b# {8 O% }9 M" _' X
def selectBest(self, pop): & l. Y& R, R4 c; W& e '''5 y( w: T( n" a3 _! e' x' {
select the best individual from pop / q4 q6 C! t: J# d- g6 i ''' 4 ^; j g8 z; p: [. m6 G s_inds = sorted(pop, key = itemgetter("fitness"), reverse = False) 1 [7 T/ V0 ^. p9 S& q return s_inds[0]+ A' t3 H6 X5 `4 w$ O/ j0 w
& T9 f0 l V, U" n- X; p% {& V- Y def selection(self, individuals, k): ; [0 i/ g3 `7 z$ A0 \1 b ''' , p3 M5 u$ a3 w. _* b; R/ n select two individuals from pop+ m/ z5 [5 S( N
''' / @( F) p0 Q' N+ V: b s_inds = sorted(individuals, key = itemgetter("fitness"), reverse=True)#sort the pop by the reference of 1/fitness 5 H6 H) z, b+ C3 S+ y/ t( [
sum_fits = sum(1/ind['fitness'] for ind in individuals) #sum up the 1/fitness of the whole pop5 X k. B; N ]
+ k5 y. a) W8 H
chosen = [] % m+ p, h$ g6 Y# t+ U for i in xrange(k):+ {7 }7 |3 |3 o2 w4 s& E! @
u = random.random() * sum_fits#randomly produce a num in the range of [0, sum_fits] $ T b( U6 X. p. N6 z. R sum_ = 0 P& L% g9 g8 p0 H for ind in s_inds: ; L2 m: p- |- A, u# o sum_ += 1/ind['fitness']#sum up the 1/fitness " P* V$ k [5 G) @8 T5 ? if sum_ > u:4 h7 ?& E8 X: X$ @2 B7 e
#when the sum of 1/fitness is bigger than u, choose the one, which means u is in the range of [sum(1,2,...,n-1),sum(1,2,...,n)] and is time to choose the one ,namely n-th individual in the pop 7 q2 ]5 @3 X8 t, j" Y( \ chosen.append(ind)3 [" h: o9 N' O" Q S
break+ ^4 L9 O3 M2 s1 S7 j* [( k
, j: M$ n- B% `8 b, B
return chosen ! f+ @9 W; e# H# `2 l1 s+ I! T& _: K" i$ \! g+ n
% Y( h) c5 f+ W! k
def crossoperate(self, offspring):& l e8 ~- c1 R2 X2 R6 A' d
'''4 z7 n# d' [) A! G+ \5 z
cross operation 6 m' p3 y# u- p '''5 J$ z6 G1 U* ]5 J+ r) O
dim = len(offspring[0]['Gene'].data)% n& G6 X/ p+ T, e6 }$ {( X3 n' }. C
' Y) |& J' P4 s: x5 F1 x# ^5 e3 L1 ~
geninfo1 = offspring[0]['Gene'].data#Gene's data of first offspring chosen from the selected pop * b4 k1 `$ A+ I geninfo2 = offspring[1]['Gene'].data#Gene's data of second offspring chosen from the selected pop! }; c2 s5 h7 H9 `' b+ X/ _# U6 @% v! n
) U$ R& E) F( F. \ q+ \7 L0 L
pos1 = random.randrange(1,dim)#select a position in the range from 0 to dim-1, 1 Y$ R/ x/ V7 m# u# }
pos2 = random.randrange(1,dim) " [4 U! X! ?5 ]( q% s3 a! L& J/ R2 k6 z8 y. m( Y! f) e# p3 {
newoff = Gene(data = [])#offspring produced by cross operation ( p- }: m: ~, ]0 y! ` temp = []* j# `. B2 R" ?/ k! j
for i in range(dim): * f/ I- l! |$ ]5 O6 T. l if (i >= min(pos1,pos2) and i <= max(pos1,pos2)): $ s3 w! t+ n5 m; W temp.append(geninfo2) ( L/ p- m% G' o& L7 j #the gene data of offspring produced by cross operation is from the second offspring in the range [min(pos1,pos2),max(pos1,pos2)]) W. b1 V# D a# T
else: B I" a6 q$ r8 v' k temp.append(geninfo1) % M5 l/ u# m! V% f3 _ #the gene data of offspring produced by cross operation is from the frist offspring in the range [min(pos1,pos2),max(pos1,pos2)] , L& H9 G# a6 o* B8 U newoff.data = temp & n; \$ {7 c4 V* m; d . ~; u1 v0 i7 C7 t$ h# e9 ^ return newoff p$ ~: y- k. o; P' o " m) D$ y) A1 d- b $ y/ c+ T9 \. s- ?" o def mutation(self, crossoff, bound):% K1 I. X; S* m: k! f+ T
''' 3 V- ^% \" Q5 c: _* n' p) X# q k mutation operation P& W- x; @9 h- S$ U& B '''% ] k D7 |. E/ w' a. Q' F+ q3 q
: o. ^3 o# h% x4 D- U# [* L dim = len(crossoff.data) + n/ N6 B8 E4 m2 ]' \, Q3 k' d q5 [( j- ?) `; S
pos = random.randrange(1,dim)#chose a position in crossoff to perform mutation.% H$ ^9 f- {/ x6 @4 H7 \* C
) T! v3 M) W; `( ?) Y crossoff.data[pos] = random.uniform(bound[0][pos],bound[1][pos]); o4 [# m h+ W7 X. U- j: O
return crossoff1 f8 `; U: p% Y8 D$ h, k' G* P
5 [- s, d5 S: o; V+ Q' u; b0 ? def GA_main(self): " e+ x6 H! u5 B3 } ''' ( r* r- f; g1 [- E- m main frame work of GA 8 s6 {% j( }; I; C/ h i& n: ~ ''' 5 h4 z6 H0 Q' n6 v! G1 ]- q8 C7 _3 S
popsize = self.parameter[3] . z, A) Y% c; Y; l: c. S0 l; J4 U! u: d$ y. a P
print("Start of evolution")7 ~& N' H7 M- h8 y* O# G
9 a6 h" ~9 K! }; {- o- u. H, V
# Begin the evolution: y5 b* k% _% L4 [/ b/ s# ~
for g in range(NGEN): 0 G. M% w2 R5 z3 R# J7 T; Y3 q3 d5 S- o) M5 H4 ?1 Y4 G
print("-- Generation %i --" % g) , i8 D, ]$ y, }$ w% m5 w& z
! G9 d2 e" ?6 _" g. n #Apply selection based on their converted fitness 1 l( b$ i# } l" e" w( a selectpop = self.selection(self.pop, popsize) # M# h- G' ^0 p" | x) n4 Y4 C8 ~: O; n
nextoff = [] 9 i1 C& k3 i& {* f
while len(nextoff) != popsize: 3 U, M s7 @1 u, H2 q" x
# Apply crossover and mutation on the offspring . `4 P! E( m- l6 m& f8 A/ A# S4 K% k8 f* ?+ V7 |
# Select two individuals # _% P; y0 t* Q7 a( v/ V4 y offspring = [random.choice(selectpop) for i in xrange(2)] ( j$ u% S$ a3 {" \6 v' O7 m, ]1 O# }3 ~# }/ @9 F
if random.random() < CXPB: # cross two individuals with probability CXPB) H- [- l* K- s ^* f8 x
crossoff = self.crossoperate(offspring) 1 {/ i! t( T( f _, f A fit_crossoff = evaluate(self.xydata, crossoff.data)# Evaluate the individuals 2 t- n# A+ w) ^6 G; O1 B 3 T: t1 c) u3 g7 s if random.random() < MUTPB: # mutate an individual with probability MUTPB0 B! ]0 _8 I; X5 m2 J
muteoff = self.mutation(crossoff,self.bound) 8 c) p2 D3 o! a8 R! Z: a, W" ~4 J" C fit_muteoff = evaluate(self.xydata, muteoff.data)# Evaluate the individuals / ^% E5 l9 g. _4 Z# v e nextoff.append({'Gene':muteoff,'fitness':fit_muteoff})5 f7 R: Z% o( L* ~
9 N4 X/ z8 T% J$ @/ z% m
# The population is entirely replaced by the offspring ; d# h; j7 I: N. F1 n7 b3 K4 q self.pop = nextoff . l) g6 c$ o, d3 ~- j5 B7 m2 o& m5 a% a! q' g( _( z
# Gather all the fitnesses in one list and print the stats 7 b- Y R, j8 K1 H0 N fits = [ind['fitness'] for ind in self.pop]$ j3 ^* g; E' p) Q# Z
P( l, Z4 [; n: h4 R% g4 S length = len(self.pop) ( p# S1 U9 O7 Y; }9 E% ? mean = sum(fits) / length , g2 ~- A3 ~( c+ s1 q sum2 = sum(x*x for x in fits)* M: z- \& _' U) n9 z; ^# ?7 s
std = abs(sum2 / length - mean**2)**0.5 6 n% S6 f% I8 o+ z$ [0 F( ?- ? best_ind = self.selectBest(self.pop) 9 I$ B5 f( ]9 i6 L. B3 z* Y) W1 }' g
if best_ind['fitness'] < self.bestindividual['fitness']: 2 L7 }% Z$ [: a; p' p self.bestindividual = best_ind 6 f0 _+ C& D; D- P3 p3 L6 a $ w+ m8 v, J' H$ b6 V/ C1 y8 l1 D print("Best individual found is %s, %s" % (self.bestindividual['Gene'].data,self.bestindividual['fitness'])) 6 \3 M4 ?. o3 P w4 e print(" Min fitness of current pop: %s" % min(fits))0 q, p8 M! b+ W: G
print(" Max fitness of current pop: %s" % max(fits)) 6 o, B' P6 @* r0 @5 K/ a6 v print(" Avg fitness of current pop: %s" % mean)" @% E* V4 m9 f
print(" Std of currrent pop: %s" % std) . \ z/ f8 |3 E( ?; H 9 M8 C5 J$ T1 Z6 g: ^ print("-- End of (successful) evolution --") * V" t( M8 R! ~' I
# h/ Z; ]8 p% V5 c
if __name__ == "__main__":+ F5 {; c* Y7 U5 o/ h4 T K
m4 e+ i: z4 r5 T CXPB, MUTPB, NGEN, popsize = 0.8, 0.3, 50, 100#control parameters 2 a. F% b1 ~3 a9 S8 s8 E6 L# e5 o. c: Q
up = [64, 64, 64, 64, 64, 64, 64, 64, 64, 64]#upper range for variables 3 W0 _9 F8 G0 ]. w+ j! o7 ^* R+ N7 t low = [-64, -64, -64, -64, -64, -64, -64, -64, -64, -64]#lower range for variables. }! {- m6 S9 c; f6 Q
parameter = [CXPB, MUTPB, NGEN, popsize, low, up] 9 A9 G9 P% o/ h& H! V 5 C6 C5 }$ Q" K y( \& I run = GA(parameter)5 b {: H4 b( f1 T
run.GA_main() s' A& B2 Y6 `" d$ g
———————————————— 5 }; ^% v0 E% n6 F2 R, Q% W2 E版权声明:本文为CSDN博主「bible_reader」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。 3 ^) ~0 g) Z" q5 V原文链接:https://blog.csdn.net/bible_reader/article/details/72782675 S2 Q. p* r9 U* b9 N, P/ P" _
; @9 e6 I& `$ f# z( |7 [" ^5 {, d3 j. R) l5 A& L2 S