- 在线时间
- 6 小时
- 最后登录
- 2017-2-16
- 注册时间
- 2011-3-28
- 听众数
- 3
- 收听数
- 0
- 能力
- 0 分
- 体力
- 143 点
- 威望
- 0 点
- 阅读权限
- 20
- 积分
- 48
- 相册
- 0
- 日志
- 0
- 记录
- 0
- 帖子
- 10
- 主题
- 1
- 精华
- 0
- 分享
- 0
- 好友
- 0
升级   45.26% 该用户从未签到
|
題目如下, 請高手幫幫忙 ^^" x s6 C: G, ]
1. Write a function that as input has an expression f, and returns the logarithmic derivate 1/f (d f)/(d x) . Use a conditional or pattern test to make your function accept any symbols as input except for lists.
+ ^* b9 D1 N) P& L/ ^' _4 A' o0 }9 v- v& M ]$ _: e' `6 |
2. + W' P+ A9 y9 U. N8 }* e
a) Write a recursive function that computes the function f[n] defined by 6 n f[n]=f[n-1]+n! for n>0, and f[0]=7. Restrict the argument to positive integers.
: V% t' Y; \0 pb) Write and test a program that computes f[n] using Module and a While loop.: c7 G% B6 x8 I, }) ?8 P. H; T
c) Compare the timings of the two methods by computing f[n] in both cases for very large values of n and/or doing the computation many times. You may have to use Clear or restart to clear Mathematica's memory of previous calculations. Explain your results.( N: `, X# Z3 s" ?
1 k6 y3 j3 U) O4 J
Consider the iterative map Subscript[x, n] == 1/2 Subsuperscript[x, n-1, 2] -\[Mu]. ( D* t) F+ o7 g- E. Q
a) Compute its fixed points and 2-cycles as a function of \[Mu].* ^0 _* q6 x+ w/ [, Z
b) Using linear stability analysis, compute the range of stability of both the fixed points as well as the 2-cycles.
& L& Z$ m% p" ^2 }& i# \! jc) Show cobweb diagrams for representative parameters illustrating the (un)stable fixed point and 2-cycle. ; ]! J) f# }, z& m; S7 b3 Z# y' O
d) Graphically demonstrate the onset of a stable 3-cycle.8 U8 U& D) r/ X' c# B! x# ^
e) Produce the bifurcation diagram. |
|