- 在线时间
- 6 小时
- 最后登录
- 2017-2-16
- 注册时间
- 2011-3-28
- 听众数
- 3
- 收听数
- 0
- 能力
- 0 分
- 体力
- 143 点
- 威望
- 0 点
- 阅读权限
- 20
- 积分
- 48
- 相册
- 0
- 日志
- 0
- 记录
- 0
- 帖子
- 10
- 主题
- 1
- 精华
- 0
- 分享
- 0
- 好友
- 0
升级   45.26% 该用户从未签到
|
題目如下, 請高手幫幫忙 ^^
6 ?" |4 F2 y$ b0 [- T6 u1. Write a function that as input has an expression f, and returns the logarithmic derivate 1/f (d f)/(d x) . Use a conditional or pattern test to make your function accept any symbols as input except for lists. $ l h: a$ @( p! F8 K; z" q
" u7 X0 b) D K y8 m
2.
; r5 W9 [. O2 g" Ba) Write a recursive function that computes the function f[n] defined by 6 n f[n]=f[n-1]+n! for n>0, and f[0]=7. Restrict the argument to positive integers.0 ~5 C7 A1 z3 ~$ i, o7 c
b) Write and test a program that computes f[n] using Module and a While loop.
0 \) y ]) _4 [& A5 |* Zc) Compare the timings of the two methods by computing f[n] in both cases for very large values of n and/or doing the computation many times. You may have to use Clear or restart to clear Mathematica's memory of previous calculations. Explain your results.$ p3 X9 G- L) {* U
* _4 a9 |9 @' \) o' w! \; R( Y6 g
Consider the iterative map Subscript[x, n] == 1/2 Subsuperscript[x, n-1, 2] -\[Mu].
- _" v/ l9 s' g0 p8 w7 Ka) Compute its fixed points and 2-cycles as a function of \[Mu].: ^- L. W$ v' m7 M2 ]
b) Using linear stability analysis, compute the range of stability of both the fixed points as well as the 2-cycles. ) F4 G: M" I# y, A# F* W7 `" C
c) Show cobweb diagrams for representative parameters illustrating the (un)stable fixed point and 2-cycle. ! G/ w& v h6 s* D4 a
d) Graphically demonstrate the onset of a stable 3-cycle.
* ` X; v% _* n! W5 v7 ee) Produce the bifurcation diagram. |
|