QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 3130|回复: 0
打印 上一主题 下一主题

求解题-数论基础(英文题目,信息安全研究生)-~~英文好的进

[复制链接]
字体大小: 正常 放大

2

主题

5

听众

21

积分

升级  16.84%

该用户从未签到

跳转到指定楼层
1#
发表于 2011-10-17 08:23 |只看该作者 |倒序浏览
|招呼Ta 关注Ta
1. Verify that Φ(84)=Φ(12)Φ(7) by finding a bijection between ordered pairs.
5 @' u' E- ?! f% a! X2. Programme Rowland's formular and verify his results. Try different starting values and see what happens.
# a; h# }: ~$ h7 w3. Verify the following result called Wilson's Theory: An integer n is prime if and only if (n-1)!≡-1(mod n ) for the cases n=2,3,4,5...,10. Can this be used as an efficent test for a prime?; V. M6 D& y  `
4. Prove that if n is a pseudoprime to base 2 then 2^n-1 is a pseudoprime to base 2 also.
8 q2 H1 P! [- ]; t5. IS 341 a pseudoprime to the base 5? Is 341 a pseudoprime to base 7? Is 341 a pseudoprime to base 13?5 \4 \) _: {* i0 J; B2 s1 C% n
6. Verify that 1729 and 2465 are Carmichael numbers using the Korselt criterion and directly.' Y- n0 p# A  H: u7 H2 H* b2 w2 D
7. Can pq be a Carmichael number where p and q are odd primes. 0 ^) \9 F3 G* z
8. Find a k such that 6k+1,12k+1,18k+1 are all prime numbers. Prove that then n=(6k+1)(12k+1)(18k+1) is a Carmichael number.& e/ E. \# F- _6 B' ~; E
9. Apply the Rabin-Miller test to n=1729 and n=2465
3 J; ?+ K3 F) S9 ^! I10. Let n=667. For which a is a^667≡a(mod 667). Do the same for n=833. You might need to write a ** programme in Maple.
zan
转播转播0 分享淘帖0 分享分享0 收藏收藏0 支持支持0 反对反对0 微信微信
您需要登录后才可以回帖 登录 | 注册地址

qq
收缩
  • 电话咨询

  • 04714969085
fastpost

关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

手机版|Archiver| |繁體中文 手机客户端  

蒙公网安备 15010502000194号

Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

GMT+8, 2025-7-22 04:53 , Processed in 0.732966 second(s), 54 queries .

回顶部