QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 3276|回复: 0
打印 上一主题 下一主题

求解题-数论基础(英文题目,信息安全研究生)-~~英文好的进

[复制链接]
字体大小: 正常 放大

2

主题

5

听众

21

积分

升级  16.84%

该用户从未签到

跳转到指定楼层
1#
发表于 2011-10-17 08:23 |只看该作者 |倒序浏览
|招呼Ta 关注Ta
1. Verify that Φ(84)=Φ(12)Φ(7) by finding a bijection between ordered pairs.
% J9 b& V  w. j2. Programme Rowland's formular and verify his results. Try different starting values and see what happens.
5 e3 {. H; ~+ x/ `  m' m/ H# R3. Verify the following result called Wilson's Theory: An integer n is prime if and only if (n-1)!≡-1(mod n ) for the cases n=2,3,4,5...,10. Can this be used as an efficent test for a prime?6 V( r$ e  Q3 @3 O
4. Prove that if n is a pseudoprime to base 2 then 2^n-1 is a pseudoprime to base 2 also.7 f, J6 E3 k5 H2 c8 j, V
5. IS 341 a pseudoprime to the base 5? Is 341 a pseudoprime to base 7? Is 341 a pseudoprime to base 13?4 `" ^6 d* [+ u9 X
6. Verify that 1729 and 2465 are Carmichael numbers using the Korselt criterion and directly.) `3 D/ x/ M; n3 ]9 }
7. Can pq be a Carmichael number where p and q are odd primes.
* ?4 N3 A5 P& i; H* Q! b8. Find a k such that 6k+1,12k+1,18k+1 are all prime numbers. Prove that then n=(6k+1)(12k+1)(18k+1) is a Carmichael number.
4 C0 j- K" F7 t# G, E1 M9. Apply the Rabin-Miller test to n=1729 and n=2465
( c& I( F2 Q" x0 I4 `10. Let n=667. For which a is a^667≡a(mod 667). Do the same for n=833. You might need to write a ** programme in Maple.
zan
转播转播0 分享淘帖0 分享分享0 收藏收藏0 支持支持0 反对反对0 微信微信
您需要登录后才可以回帖 登录 | 注册地址

qq
收缩
  • 电话咨询

  • 04714969085
fastpost

关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

手机版|Archiver| |繁體中文 手机客户端  

蒙公网安备 15010502000194号

Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

GMT+8, 2025-10-8 03:00 , Processed in 1.399221 second(s), 54 queries .

回顶部