本帖最后由 lilianjie 于 2012-1-4 17:59 编辑 \* O. N: [0 ], c, {1 N' O - `2 v7 y0 A* j1 gQ5:=QuadraticField(5) ; - s: V0 v) f% f6 W6 HQ5; / Y% i. t& R: a3 e6 c1 BQ<w> :=PolynomialRing(Q5);Q;3 q, l" t+ z% ]1 ]/ s0 z6 S
; i0 e4 \# h7 `
EquationOrder(Q5); - Y( G J/ C3 g- ?! p; c" KM:=MaximalOrder(Q5) ; 6 N6 E, r, ~4 b; GM;. [3 K* U4 W" y4 n K8 Z
NumberField(M); , g& A8 F3 H0 n8 s+ s1 }' aS1:=sub< M | 1 >;S2:=sub< M | 2 >;S3:=sub< M | 3 >;S4:=sub< M | 4 >;S5:=sub< M | 5 >;S25:=sub< M | 25 >;S625888888:=sub< M | 625888888 >;S625888888;# K* A# R* {! I" m8 W0 m
IsQuadratic(Q5);IsQuadratic(S1);IsQuadratic(S4);IsQuadratic(S25);IsQuadratic(S625888888);: @( f9 y3 r- g5 Q6 Z
Factorization(w^2-3); " f% P+ H0 C8 B$ S. fDiscriminant(Q5) ;) k# q9 g2 G5 R/ G
FundamentalUnit(Q5) ;" o: ^6 N9 ^, }- D S
FundamentalUnit(M);0 G$ u8 q4 |1 g
Conductor(Q5) ;8 z3 v/ A( |0 {2 H' O$ q N) V# V" }
Name(Q5, 1); ; v! _7 R6 ~3 M. w/ l, qName(M, 1); $ |% K+ ]/ X0 W1 q1 P( v2 dConductor(M);/ ^ _, e# h" G+ m' q" S
ClassGroup(Q5) ; * N' R% x1 S! ]' sClassGroup(M); , x) f6 o h0 I1 g3 jClassNumber(Q5) ; 2 ~9 Y8 J# ~, M4 q; x. @ClassNumber(M) ;% {7 p" d3 D- E h# ]
( N; D# b/ K' S8 }+ {/ T* C, ePicardGroup(M) ; J w. c+ P" [6 n- P3 C
PicardNumber(M) ;4 ~& k% R* o$ }! K N
( h; f4 K$ i2 ]' P! Y5 E+ E7 R B0 [" n( G+ C4 K& L
QuadraticClassGroupTwoPart(Q5);) U& c$ k0 i' Y% X8 s ?: p
QuadraticClassGroupTwoPart(M);& J7 A* y! z; x: X
! F, p) X8 f/ h j9 s
4 X9 k. y$ ~! l( Q! Z* K: ^2 v* }
NormEquation(Q5, 5) ;% w4 {. K8 J# ?/ S7 f
NormEquation(M, 5) ; ! `6 }, z; I% u, N& |$ z$ Z 8 c# k/ S7 Z5 f3 M6 R & O* ~7 F3 S: g* G5 h6 I+ VQuadratic Field with defining polynomial $.1^2 - 5 over the Rational Field* p( i. J* V8 U% h: s
Univariate Polynomial Ring in w over Q5) b, E- o' h! h7 i- G
Equation Order of conductor 2 in Q5 + N& W4 G4 G9 q; T. E: w. VMaximal Order of Q5 1 h' ?; d4 W5 p# p/ m, ?, d1 VQuadratic Field with defining polynomial $.1^2 - 5 over the Rational Field & g7 F% u6 ^: e- ~2 ?Order of conductor 625888888 in Q5 9 n" _) y9 f: h" n7 utrue Quadratic Field with defining polynomial $.1^2 - 5 over the Rational Field " P! [' u/ [- H" j9 }true Maximal Order of Q5 & h* Z1 ^/ \! O$ `# H. `0 ~# J6 jtrue Order of conductor 16 in Q5 4 p$ V7 g0 R& |* P* dtrue Order of conductor 625 in Q5 0 P, b O0 o7 n5 S t; {/ }- ktrue Order of conductor 391736900121876544 in Q5 1 S- y% C' ^. R9 L" H L1 j; K[5 l o8 w- P. F& v' o& }- Y
<w^2 - 3, 1> 8 H+ W, h# `+ ]1 Y" T] & d" L; y2 K) d: U1 Q) }( O51 D; j% P# y6 k% `
1/2*(-Q5.1 + 1) 7 J; m" u+ z \: ?6 {4 C-$.2 + 1 A8 M% @2 t/ C6 `3 g
5; F( \5 u! [3 X% ~7 b
Q5.1* H' `* t4 t, z/ j! U& P% u: | C
$.2 # d4 f8 y) o. @* [1 ; v1 b5 N. L' R aAbelian Group of order 1/ @( T1 S, B- _4 ~6 q
Mapping from: Abelian Group of order 1 to Set of ideals of M " l, }$ b$ s0 q7 EAbelian Group of order 11 U! e: E- l' z S
Mapping from: Abelian Group of order 1 to Set of ideals of M, ?1 d B8 W/ p. R. I
1 \( [, C1 a$ C; R# l
14 r! \* H3 Q4 r$ [6 v
Abelian Group of order 1 # ^' O/ @7 j) u* L/ ?Mapping from: Abelian Group of order 1 to Set of ideals of M given by a rule [no0 y s& j( Q( R- S8 @7 ~! G
inverse]' @0 |% U1 p- Q" p4 F, g
1 ' Q5 |/ N7 ]" \& ?2 E$ AAbelian Group of order 1 % g1 I# n D2 E' O. g' Z+ f" {Mapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant( M! Z- I9 @ C5 J5 n4 s
5 given by a rule [no inverse] 0 V; d3 W% t$ |/ ?% I5 X/ AAbelian Group of order 1 & {+ T. P% ~5 ^; K/ ~+ C4 V# kMapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant) ~2 f6 Q+ c; I' Z
5 given by a rule [no inverse]" |( h/ C8 z* p1 Y. v9 n
true [ 1/2*(Q5.1 + 5) ] # p" F* y# W; m5 l: g) Utrue [ -2*$.2 + 1 ] . C. ^3 q Y; j5 n4 p7 N6 D" ^ ( y7 _# U2 ~3 v5 p) w7 a/ k 8 P9 N0 B/ v9 s1 V j & _& Z7 M) n# S8 ~ K8 k1 ~5 R" t( B% {% [1 n" i" K7 f/ F; M, @. F
3 u6 Q3 a4 s8 E* q4 N _( } J* K- q- i' b6 f
5 X2 z" D5 ^, V# b* K 9 F- N2 C3 X, F' S/ n) C/ b$ ~2 W; D7 V, x# r8 K
# N% N1 s5 s: A
============== ( [5 u2 q, j, T. I5 O1 B$ l: h: j3 v9 R* ^5 F
Q5:=QuadraticField(50) ; ; f+ P3 s8 G9 i+ v' F2 xQ5; 9 M" Y; C; `0 k) G5 [( X- d$ {, ]/ B( [( E# j& I$ n
Q<w> :=PolynomialRing(Q5);Q;3 U) i4 y- x7 d3 I
EquationOrder(Q5); # B5 E% X8 y. l1 F& S6 ^4 kM:=MaximalOrder(Q5) ; 9 {7 _5 r A3 |2 DM; # A! F2 E# m" m1 O a$ o" V3 |1 qNumberField(M); 0 }3 y. F/ C* W! LS1:=sub< M | 1 >;S2:=sub< M | 2 >;S3:=sub< M | 3 >;S4:=sub< M | 4 >;S5:=sub< M | 5 >;S25:=sub< M | 25 >;S625888888:=sub< M | 625888888 >;S625888888; 6 ~4 w: n5 X6 i9 }( e- e/ KIsQuadratic(Q5); ( {' C' a3 Y7 F. xIsQuadratic(S1);( A# v( @2 R$ S V* I W
IsQuadratic(S4); 1 R! N M9 g! z: m% e8 W" iIsQuadratic(S25);4 R6 ^5 [9 @& _+ n+ o$ U9 M" Q1 Y
IsQuadratic(S625888888);9 h2 t* V) O8 _/ R
Factorization(w^2-50); " D, D2 [ h, B8 o$ j! vDiscriminant(Q5) ;8 y/ b- k% _" g1 ]
FundamentalUnit(Q5) ; / @4 j H& w& qFundamentalUnit(M);3 B( N, P, I: u( r7 r2 C
Conductor(Q5) ;* i* b7 z! J1 J* b [ t
8 l6 V {4 m9 c2 z+ q3 |Name(M, 50);( V& Y, x5 f8 d1 k5 f' v, w' N
Conductor(M); 8 _7 ~; M9 W5 @: LClassGroup(Q5) ; * M2 @ N: P# b" p& QClassGroup(M); ; Q7 h; H' N2 C Y$ E2 z& W# iClassNumber(Q5) ;) u# m( q& V( F9 S' j
ClassNumber(M) ;' w3 h% X& r) k
PicardGroup(M) ; & V/ V) h- G* {PicardNumber(M) ; ! P, _# E/ q" v$ }& e5 {, ^6 W- j5 ^" T6 f O/ n, I% W9 L0 J
QuadraticClassGroupTwoPart(Q5); 2 v; [7 _ s! p* p- |& O0 i% sQuadraticClassGroupTwoPart(M); . x! b8 R& n& PNormEquation(Q5, 50) ; ! L2 G- W5 s% a% n0 \7 Z7 n5 gNormEquation(M, 50) ; $ u8 ?% P$ ?8 l6 f1 D! E, n " R$ F8 ]- E6 I* p& y/ ^+ ]Quadratic Field with defining polynomial $.1^2 - 2 over the Rational Field+ B: w0 N2 c* F+ ~" M- J4 }+ g8 b
Univariate Polynomial Ring in w over Q5 8 s& @" A. L7 o, YEquation Order of conductor 1 in Q5* _- T w' s1 j& u' V/ r
Maximal Equation Order of Q5$ d- P$ O. I8 Q( ?8 r( u
Quadratic Field with defining polynomial $.1^2 - 2 over the Rational Field! H" J* X% l$ L! T6 d7 \
Order of conductor 625888888 in Q5! v+ m6 r! Z, t1 A
true Quadratic Field with defining polynomial $.1^2 - 2 over the Rational Field' m0 G' s( m: g3 E
true Maximal Equation Order of Q5 ! C, c) h o6 n/ u" Y3 L) @true Order of conductor 1 in Q5 2 s9 Z0 Y8 y# E7 H8 I7 ntrue Order of conductor 1 in Q55 B, d) w! }/ h7 i/ }' ~1 f2 ^
true Order of conductor 1 in Q56 m0 t4 e: r0 U: d, m; `1 p
[7 K8 m8 {0 F0 \
<w - 5*Q5.1, 1>,1 E6 ~+ D8 _9 M# R
<w + 5*Q5.1, 1> ) Q6 U7 x* X+ K8 A" I4 o0 a] Z$ U/ u! X! {- {1 t' h, J" E
8; ^" g( J, h% P/ H: f! [
Q5.1 + 18 n/ `' V/ K: N) ^1 G+ r( H
$.2 + 1: d& ^, t2 z. E x7 h- S
8 ( E' b; ~7 q! D" z+ [7 }: P- d$ B w+ t% A+ o
>> Name(M, 50); , L2 d& o# _4 @ ^8 s. d& g9 G- ]
Runtime error in 'Name': Argument 2 (50) should be in the range [1 .. 1] + ^9 z1 j. e1 T' d* J9 o+ p C, H1 d+ k% }# F7 l
1 & U+ t- A* X, [) w7 rAbelian Group of order 13 ?3 K" b, u7 n1 @2 y
Mapping from: Abelian Group of order 1 to Set of ideals of M$ F* a, s6 K/ l$ n; I5 T
Abelian Group of order 1 4 t9 |8 U2 H. r- q8 I8 i( wMapping from: Abelian Group of order 1 to Set of ideals of M2 A0 g' y( k0 s2 c+ m
1 0 a9 |( t2 o2 \" s, w1) b7 k6 U; z: b% ?- n. E9 d. @
Abelian Group of order 1( q) C1 K, g2 a- Z! R
Mapping from: Abelian Group of order 1 to Set of ideals of M given by a rule [no : o8 z5 s8 A& I$ O5 l- B$ `& g& y: {inverse] ! e" I& G$ Z% _! V12 U# y# D& T' R& X' Y( z
Abelian Group of order 11 o# I( w9 _% z( D! r
Mapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant / G, m0 |5 `1 s2 t/ M8 given by a rule [no inverse]" n0 Z; k* c3 |0 y1 H6 P
Abelian Group of order 1' c4 W# q! G1 K/ [$ j& x
Mapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant . v8 F9 Z9 m8 n4 N5 X8 given by a rule [no inverse]. A) z) r8 Z/ R6 \- e. k
true [ 5*Q5.1 + 10 ]* C% m3 j, g1 Y
true [ -5*$.2 ]