QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 4010|回复: 6
打印 上一主题 下一主题

实二次域(5/50)例2

[复制链接]
字体大小: 正常 放大
lilianjie        

43

主题

4

听众

204

积分

升级  52%

  • TA的每日心情
    开心
    2012-1-13 11:05
  • 签到天数: 15 天

    [LV.4]偶尔看看III

    跳转到指定楼层
    1#
    发表于 2012-1-4 14:05 |只看该作者 |倒序浏览
    |招呼Ta 关注Ta
    本帖最后由 lilianjie 于 2012-1-4 17:59 编辑
      \* O. N: [0 ], c, {1 N' O
    - `2 v7 y0 A* j1 gQ5:=QuadraticField(5) ;
    - s: V0 v) f% f6 W6 HQ5;
    / Y% i. t& R: a3 e6 c1 BQ<w> :=PolynomialRing(Q5);Q;3 q, l" t+ z% ]1 ]/ s0 z6 S
    ; i0 e4 \# h7 `
    EquationOrder(Q5);
    - Y( G  J/ C3 g- ?! p; c" KM:=MaximalOrder(Q5) ;
    6 N6 E, r, ~4 b; GM;. [3 K* U4 W" y4 n  K8 Z
    NumberField(M);
    , g& A8 F3 H0 n8 s+ s1 }' aS1:=sub< M | 1 >;S2:=sub< M | 2 >;S3:=sub< M | 3 >;S4:=sub< M | 4 >;S5:=sub< M | 5 >;S25:=sub< M | 25 >;S625888888:=sub< M | 625888888 >;S625888888;# K* A# R* {! I" m8 W0 m
    IsQuadratic(Q5);IsQuadratic(S1);IsQuadratic(S4);IsQuadratic(S25);IsQuadratic(S625888888);: @( f9 y3 r- g5 Q6 Z
    Factorization(w^2-3);
    " f% P+ H0 C8 B$ S. fDiscriminant(Q5) ;) k# q9 g2 G5 R/ G
    FundamentalUnit(Q5) ;" o: ^6 N9 ^, }- D  S
    FundamentalUnit(M);0 G$ u8 q4 |1 g
    Conductor(Q5) ;8 z3 v/ A( |0 {2 H' O$ q  N) V# V" }
    Name(Q5, 1);
    ; v! _7 R6 ~3 M. w/ l, qName(M, 1);
    $ |% K+ ]/ X0 W1 q1 P( v2 dConductor(M);/ ^  _, e# h" G+ m' q" S
    ClassGroup(Q5) ;
    * N' R% x1 S! ]' sClassGroup(M);
    , x) f6 o  h0 I1 g3 jClassNumber(Q5) ;
    2 ~9 Y8 J# ~, M4 q; x. @ClassNumber(M) ;% {7 p" d3 D- E  h# ]

    ( N; D# b/ K' S8 }+ {/ T* C, ePicardGroup(M) ;  J  w. c+ P" [6 n- P3 C
    PicardNumber(M) ;4 ~& k% R* o$ }! K  N

    ( h; f4 K$ i2 ]' P! Y5 E+ E7 R  B0 [" n( G+ C4 K& L
    QuadraticClassGroupTwoPart(Q5);) U& c$ k0 i' Y% X8 s  ?: p
    QuadraticClassGroupTwoPart(M);& J7 A* y! z; x: X
    ! F, p) X8 f/ h  j9 s
    4 X9 k. y$ ~! l( Q! Z* K: ^2 v* }
    NormEquation(Q5, 5) ;% w4 {. K8 J# ?/ S7 f
    NormEquation(M, 5) ;
    ! `6 }, z; I% u, N& |$ z$ Z
    8 c# k/ S7 Z5 f3 M6 R
    & O* ~7 F3 S: g* G5 h6 I+ VQuadratic Field with defining polynomial $.1^2 - 5 over the Rational Field* p( i. J* V8 U% h: s
    Univariate Polynomial Ring in w over Q5) b, E- o' h! h7 i- G
    Equation Order of conductor 2 in Q5
    + N& W4 G4 G9 q; T. E: w. VMaximal Order of Q5
    1 h' ?; d4 W5 p# p/ m, ?, d1 VQuadratic Field with defining polynomial $.1^2 - 5 over the Rational Field
    & g7 F% u6 ^: e- ~2 ?Order of conductor 625888888 in Q5
    9 n" _) y9 f: h" n7 utrue Quadratic Field with defining polynomial $.1^2 - 5 over the Rational Field
    " P! [' u/ [- H" j9 }true Maximal Order of Q5
    & h* Z1 ^/ \! O$ `# H. `0 ~# J6 jtrue Order of conductor 16 in Q5
    4 p$ V7 g0 R& |* P* dtrue Order of conductor 625 in Q5
    0 P, b  O0 o7 n5 S  t; {/ }- ktrue Order of conductor 391736900121876544 in Q5
    1 S- y% C' ^. R9 L" H  L1 j; K[5 l  o8 w- P. F& v' o& }- Y
        <w^2 - 3, 1>
    8 H+ W, h# `+ ]1 Y" T]
    & d" L; y2 K) d: U1 Q) }( O51 D; j% P# y6 k% `
    1/2*(-Q5.1 + 1)
    7 J; m" u+ z  \: ?6 {4 C-$.2 + 1  A8 M% @2 t/ C6 `3 g
    5; F( \5 u! [3 X% ~7 b
    Q5.1* H' `* t4 t, z/ j! U& P% u: |  C
    $.2
    # d4 f8 y) o. @* [1
    ; v1 b5 N. L' R  aAbelian Group of order 1/ @( T1 S, B- _4 ~6 q
    Mapping from: Abelian Group of order 1 to Set of ideals of M
    " l, }$ b$ s0 q7 EAbelian Group of order 11 U! e: E- l' z  S
    Mapping from: Abelian Group of order 1 to Set of ideals of M, ?1 d  B8 W/ p. R. I
    1  \( [, C1 a$ C; R# l
    14 r! \* H3 Q4 r$ [6 v
    Abelian Group of order 1
    # ^' O/ @7 j) u* L/ ?Mapping from: Abelian Group of order 1 to Set of ideals of M given by a rule [no0 y  s& j( Q( R- S8 @7 ~! G
    inverse]' @0 |% U1 p- Q" p4 F, g
    1
    ' Q5 |/ N7 ]" \& ?2 E$ AAbelian Group of order 1
    % g1 I# n  D2 E' O. g' Z+ f" {Mapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant( M! Z- I9 @  C5 J5 n4 s
    5 given by a rule [no inverse]
    0 V; d3 W% t$ |/ ?% I5 X/ AAbelian Group of order 1
    & {+ T. P% ~5 ^; K/ ~+ C4 V# kMapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant) ~2 f6 Q+ c; I' Z
    5 given by a rule [no inverse]" |( h/ C8 z* p1 Y. v9 n
    true [ 1/2*(Q5.1 + 5) ]
    # p" F* y# W; m5 l: g) Utrue [ -2*$.2 + 1 ]
    . C. ^3 q  Y; j5 n4 p7 N6 D" ^
    ( y7 _# U2 ~3 v5 p) w7 a/ k
    8 P9 N0 B/ v9 s1 V  j
    & _& Z7 M) n# S8 ~
      K8 k1 ~5 R" t( B% {% [1 n" i" K7 f/ F; M, @. F

    3 u6 Q3 a4 s8 E* q4 N  _( }  J* K- q- i' b6 f

    5 X2 z" D5 ^, V# b* K
    9 F- N2 C3 X, F' S/ n) C/ b$ ~2 W; D7 V, x# r8 K
    # N% N1 s5 s: A
    ==============
    ( [5 u2 q, j, T. I5 O1 B$ l: h: j3 v9 R* ^5 F
    Q5:=QuadraticField(50) ;
    ; f+ P3 s8 G9 i+ v' F2 xQ5;
    9 M" Y; C; `0 k) G5 [( X- d$ {, ]/ B( [( E# j& I$ n
    Q<w> :=PolynomialRing(Q5);Q;3 U) i4 y- x7 d3 I
    EquationOrder(Q5);
    # B5 E% X8 y. l1 F& S6 ^4 kM:=MaximalOrder(Q5) ;
    9 {7 _5 r  A3 |2 DM;
    # A! F2 E# m" m1 O  a$ o" V3 |1 qNumberField(M);
    0 }3 y. F/ C* W! LS1:=sub< M | 1 >;S2:=sub< M | 2 >;S3:=sub< M | 3 >;S4:=sub< M | 4 >;S5:=sub< M | 5 >;S25:=sub< M | 25 >;S625888888:=sub< M | 625888888 >;S625888888;
    6 ~4 w: n5 X6 i9 }( e- e/ KIsQuadratic(Q5);
    ( {' C' a3 Y7 F. xIsQuadratic(S1);( A# v( @2 R$ S  V* I  W
    IsQuadratic(S4);
    1 R! N  M9 g! z: m% e8 W" iIsQuadratic(S25);4 R6 ^5 [9 @& _+ n+ o$ U9 M" Q1 Y
    IsQuadratic(S625888888);9 h2 t* V) O8 _/ R
    Factorization(w^2-50);  
    " D, D2 [  h, B8 o$ j! vDiscriminant(Q5) ;8 y/ b- k% _" g1 ]
    FundamentalUnit(Q5) ;
    / @4 j  H& w& qFundamentalUnit(M);3 B( N, P, I: u( r7 r2 C
    Conductor(Q5) ;* i* b7 z! J1 J* b  [  t

    8 l6 V  {4 m9 c2 z+ q3 |Name(M, 50);( V& Y, x5 f8 d1 k5 f' v, w' N
    Conductor(M);
    8 _7 ~; M9 W5 @: LClassGroup(Q5) ;
    * M2 @  N: P# b" p& QClassGroup(M);
    ; Q7 h; H' N2 C  Y$ E2 z& W# iClassNumber(Q5) ;) u# m( q& V( F9 S' j
    ClassNumber(M) ;' w3 h% X& r) k
    PicardGroup(M) ;
    & V/ V) h- G* {PicardNumber(M) ;
    ! P, _# E/ q" v$ }& e5 {, ^6 W- j5 ^" T6 f  O/ n, I% W9 L0 J
    QuadraticClassGroupTwoPart(Q5);
    2 v; [7 _  s! p* p- |& O0 i% sQuadraticClassGroupTwoPart(M);
    . x! b8 R& n& PNormEquation(Q5, 50) ;
    ! L2 G- W5 s% a% n0 \7 Z7 n5 gNormEquation(M, 50) ;
    $ u8 ?% P$ ?8 l6 f1 D! E, n
    " R$ F8 ]- E6 I* p& y/ ^+ ]Quadratic Field with defining polynomial $.1^2 - 2 over the Rational Field+ B: w0 N2 c* F+ ~" M- J4 }+ g8 b
    Univariate Polynomial Ring in w over Q5
    8 s& @" A. L7 o, YEquation Order of conductor 1 in Q5* _- T  w' s1 j& u' V/ r
    Maximal Equation Order of Q5$ d- P$ O. I8 Q( ?8 r( u
    Quadratic Field with defining polynomial $.1^2 - 2 over the Rational Field! H" J* X% l$ L! T6 d7 \
    Order of conductor 625888888 in Q5! v+ m6 r! Z, t1 A
    true Quadratic Field with defining polynomial $.1^2 - 2 over the Rational Field' m0 G' s( m: g3 E
    true Maximal Equation Order of Q5
    ! C, c) h  o6 n/ u" Y3 L) @true Order of conductor 1 in Q5
    2 s9 Z0 Y8 y# E7 H8 I7 ntrue Order of conductor 1 in Q55 B, d) w! }/ h7 i/ }' ~1 f2 ^
    true Order of conductor 1 in Q56 m0 t4 e: r0 U: d, m; `1 p
    [7 K8 m8 {0 F0 \
        <w - 5*Q5.1, 1>,1 E6 ~+ D8 _9 M# R
        <w + 5*Q5.1, 1>
    ) Q6 U7 x* X+ K8 A" I4 o0 a]  Z$ U/ u! X! {- {1 t' h, J" E
    8; ^" g( J, h% P/ H: f! [
    Q5.1 + 18 n/ `' V/ K: N) ^1 G+ r( H
    $.2 + 1: d& ^, t2 z. E  x7 h- S
    8
    ( E' b; ~7 q! D" z+ [7 }: P- d$ B  w+ t% A+ o
    >> Name(M, 50);
    , L2 d& o# _4 @       ^8 s. d& g9 G- ]
    Runtime error in 'Name': Argument 2 (50) should be in the range [1 .. 1]
    + ^9 z1 j. e1 T' d* J9 o+ p  C, H1 d+ k% }# F7 l
    1
    & U+ t- A* X, [) w7 rAbelian Group of order 13 ?3 K" b, u7 n1 @2 y
    Mapping from: Abelian Group of order 1 to Set of ideals of M$ F* a, s6 K/ l$ n; I5 T
    Abelian Group of order 1
    4 t9 |8 U2 H. r- q8 I8 i( wMapping from: Abelian Group of order 1 to Set of ideals of M2 A0 g' y( k0 s2 c+ m
    1
    0 a9 |( t2 o2 \" s, w1) b7 k6 U; z: b% ?- n. E9 d. @
    Abelian Group of order 1( q) C1 K, g2 a- Z! R
    Mapping from: Abelian Group of order 1 to Set of ideals of M given by a rule [no
    : o8 z5 s8 A& I$ O5 l- B$ `& g& y: {inverse]
    ! e" I& G$ Z% _! V12 U# y# D& T' R& X' Y( z
    Abelian Group of order 11 o# I( w9 _% z( D! r
    Mapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant
    / G, m0 |5 `1 s2 t/ M8 given by a rule [no inverse]" n0 Z; k* c3 |0 y1 H6 P
    Abelian Group of order 1' c4 W# q! G1 K/ [$ j& x
    Mapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant
    . v8 F9 Z9 m8 n4 N5 X8 given by a rule [no inverse]. A) z) r8 Z/ R6 \- e. k
    true [ 5*Q5.1 + 10 ]* C% m3 j, g1 Y
    true [ -5*$.2 ]
    zan
    转播转播0 分享淘帖0 分享分享0 收藏收藏0 支持支持0 反对反对0 微信微信
    lilianjie        

    43

    主题

    4

    听众

    204

    积分

    升级  52%

  • TA的每日心情
    开心
    2012-1-13 11:05
  • 签到天数: 15 天

    [LV.4]偶尔看看III

    二次域上的分歧理论

    1.JPG (177.16 KB, 下载次数: 287)

    1.JPG

    回复

    使用道具 举报

    lilianjie        

    43

    主题

    4

    听众

    204

    积分

    升级  52%

  • TA的每日心情
    开心
    2012-1-13 11:05
  • 签到天数: 15 天

    [LV.4]偶尔看看III

    本帖最后由 lilianjie 于 2012-1-5 12:42 编辑 5 h; ?; u8 e3 L2 j6 S: u

    0 C, K$ ~! K3 V. d基本单位计算fundamentalunit :
    # A# o7 r. N- L3 c" `( _9 ]! F5 mod4 =1                                              50 mod 4=2$ W) q- x+ e  c  [
    ' r# X6 `$ c# O) u
    x^2 - 5y^2 = -1.                                 x^2 - 50y^2 = 1.
    , E/ j" _( j: U) I" r/ M/ R3 G' K  U1 i x^2 - 5y^2 = 1.                                  x^2 - 50y^2 = -1.
    0 ?0 x; b9 s9 P$ W- g; X% n . [) [1 _* ?+ @9 }9 @8 Q, h/ R5 ?
    0 i. o% z! w! a
    最小整解(±2,±1)                              最小整解(±7,±1): X% y' h/ I2 z. F5 J# I
                                                                 ±7 MOD2=1
    ( E& O7 K5 ^) d4 Q4 g8 Y( U8 K; V2 w, z8 F5 ]. A
    两个基本单位:

    11.JPG (3.19 KB, 下载次数: 273)

    11.JPG

    回复

    使用道具 举报

    15

    主题

    4

    听众

    113

    积分

    升级  6.5%

  • TA的每日心情
    开心
    2012-1-13 11:49
  • 签到天数: 9 天

    [LV.3]偶尔看看II

    lilianjie 发表于 2012-1-4 18:31 1 O# p( H! [0 ^. O
    基本单位fundamentalunit :
    4 s( k. w7 ]. h& h5 mod4 =1                              50 mod 4=2
    ( [; G$ m3 v( B9 w, _9 A; M% e
    基本单位fundamentalunit

    3.JPG (105.07 KB, 下载次数: 267)

    3.JPG

    2.JPG (140.29 KB, 下载次数: 272)

    2.JPG

    1.JPG (193.2 KB, 下载次数: 270)

    1.JPG

    回复

    使用道具 举报

    15

    主题

    4

    听众

    113

    积分

    升级  6.5%

  • TA的每日心情
    开心
    2012-1-13 11:49
  • 签到天数: 9 天

    [LV.3]偶尔看看II

    本帖最后由 lilianjie1 于 2012-1-4 19:16 编辑 3 [6 u! [8 }9 K* |

    . C7 G1 |" K. g! [; B( M9 S( h* k判别式计算Discriminant9 T8 {; m+ o6 b0 U. j8 V( V! l

    4 {9 P2 S# v) t/ S5MOD 4=1
    6 ~; [/ T1 p4 w
    ) g8 ]6 U: R$ D(1+1)/2=1          (1-1)/2=0
    & D7 e- g& }) ^% V' ?  |4 q# g$ X) n  M; w
    D=5' z# ]) G  k* N
    / X7 i; K' `) @3 `! |5 s/ O
    * h4 j$ E8 S3 p: ]- N. q. m
    50MOD 4=2
    / S+ P1 B0 O5 ~/ E7 {, [D=2*4=8

    33.JPG (165.31 KB, 下载次数: 263)

    33.JPG

    22.JPG (137.12 KB, 下载次数: 254)

    22.JPG

    11.JPG (163.36 KB, 下载次数: 294)

    11.JPG

    回复

    使用道具 举报

    74

    主题

    6

    听众

    3295

    积分

    升级  43.17%

  • TA的每日心情
    无聊
    2015-9-4 00:52
  • 签到天数: 374 天

    [LV.9]以坛为家II

    社区QQ达人 邮箱绑定达人 发帖功臣 最具活力勋章

    群组数学建摸协会

    群组Matlab讨论组

    群组小草的客厅

    群组数学建模

    群组LINGO

    回复

    使用道具 举报

    lilianjie        

    43

    主题

    4

    听众

    204

    积分

    升级  52%

  • TA的每日心情
    开心
    2012-1-13 11:05
  • 签到天数: 15 天

    [LV.4]偶尔看看III

    lilianjie 发表于 2012-1-9 20:44
    . s: O. V4 C  A! T
    2 P+ q$ e. f* o' }" z% _分圆多项式总是原多项式因子:, D+ u. u" a- U7 v" m3 N
    C:=CyclotomicField(5);C;
    / A$ i: D, j7 @% a5 b! mCyclotomicPolynomial(5);
    " j( _: {/ y6 X3 y

    6 g& @. b" N6 B; k. l; T4 z分圆域:
      t* Z( p3 X: `# O+ m6 E0 H分圆域:123) ~% x) `  s' ^- Y' i
    / B2 X; b& S. ?4 J" g; r1 U
    R.<x> = Q[]
    / l) V* U% y! B4 |: ?$ A0 ^F8 = factor(x^8 - 1)
    5 |$ p3 c0 w$ Q! O1 h+ L6 _F86 T! V4 D8 y8 T& x1 h- h& m& l
    % [( a4 r* e# A
    (x - 1) * (x + 1) * (x^2 + 1) * (x^4 + 1)(x - 1) * (x + 1) * (x^2 + 1) * (x^4 + 1)
    4 X8 p1 t& P1 f6 m& E- u- J  n' f0 o/ z# [% \" ~" G- q, |
    Q<x> := QuadraticField(8);Q;$ W/ C, U5 b/ ~1 R, c. A
    C:=CyclotomicField(8);C;8 `: w) L  s% q) A) d
    FF:=CyclotomicPolynomial(8);FF;; H8 g! x" k- ]% |9 O
    ' o0 F6 k* d9 ^3 Y5 I4 y$ v
    F := QuadraticField(8);' N( c+ k8 t/ \, n  w  a
    F;
    6 t( D8 ?+ i  S5 ~D:=Factorization(FF) ;D;
    / x" _0 ~  P7 B7 B6 i" I3 ]4 QQuadratic Field with defining polynomial $.1^2 - 2 over the Rational Field
    $ D: |$ b- `  M- F& {# C+ K7 YCyclotomic Field of order 8 and degree 4  i5 o! d* o4 C6 _* E
    $.1^4 + 1/ q; U( B. Y( ]0 f# u; c* ?
    Quadratic Field with defining polynomial $.1^2 - 2 over the Rational Field4 i( W' S1 Y. z+ l+ `
    [9 h' O. _- F  f( K; d- o6 b
        <$.1^4 + 1, 1>0 E+ `& ^1 k. q/ x
    ]" `" D: G9 M7 d0 X( R$ W
    . F$ W, m5 T- E4 v/ x
    R.<x> = QQ[]% v" k- Y) N' \) L# \6 B+ j0 y" V
    F6 = factor(x^6 - 1)
    . T: b9 i% ?5 S0 z+ yF6
    7 ]+ G( x  f: E* i  f- E9 I; c3 e! y
    (x - 1) * (x + 1) * (x^2 - x + 1) * (x^2 + x + 1)(x - 1) * (x + 1) * (x^2 - x + 1) * (x^2 + x + 1)
      p7 }) B. Q: u. `. ]
    6 E2 t! s) g( j! Y1 P# N: x) qQ<x> := QuadraticField(6);Q;
    % n! `2 U7 O9 G: DC:=CyclotomicField(6);C;) Y8 Q  U. K  A! g6 ^3 q2 ]5 [
    FF:=CyclotomicPolynomial(6);FF;$ D, a  S2 a/ b
    5 q; p! r4 ~. D3 V/ X" X+ D. f# D
    F := QuadraticField(6);
    4 z" F: Y' {) |& f" r" H* X; aF;
    $ u" f* J& N! W& }" h0 H7 ~) sD:=Factorization(FF) ;D;& X/ L( J/ C# u# T
    Quadratic Field with defining polynomial $.1^2 - 6 over the Rational Field
    + ]+ G( _& p6 p1 BCyclotomic Field of order 6 and degree 2
    ( y5 Q3 C' P$ ^: a/ h5 ?+ U7 }$.1^2 - $.1 + 1
    ) l6 x# C# R) U6 }0 F. n: j! K4 QQuadratic Field with defining polynomial $.1^2 - 6 over the Rational Field* w6 K+ b: i1 I9 h2 v
    [
      J, x1 B3 o# J    <$.1^2 - $.1 + 1, 1>. }+ O& M( X5 s) @+ U; D
    ]
    6 @2 x  Q, g+ [) |
    & L/ L% ~1 ~4 o" U0 DR.<x> = QQ[]
    " m  A# c9 v8 ZF5 = factor(x^10 - 1): H! n0 h6 K* K. z' y2 b7 r: ?/ m3 x
    F53 ^, G4 n/ t" ?) v* H
    (x - 1) * (x + 1) * (x^4 - x^3 + x^2 - x + 1) * (x^4 + x^3 + x^2 + x +& j/ Y9 C9 I% a8 g
    1)(x - 1) * (x + 1) * (x^4 - x^3 + x^2 - x + 1) * (x^4 + x^3 + x^2 + x + 1)
    9 _  l. ?$ V  `& @  K1 I: M0 a
    4 a7 l& Q8 Y% Z; L" }Q<x> := QuadraticField(10);Q;' [: u! {5 _& {* C5 F" |6 b
    C:=CyclotomicField(10);C;7 o: e. l6 p! a" A% C
    FF:=CyclotomicPolynomial(10);FF;
    7 z- h/ l) u1 R$ L" Z4 `7 T" c+ u2 t5 p' R9 N3 M
    F := QuadraticField(10);
    " H1 E3 p9 u9 N7 `F;
    & I0 V; B6 R* Y& i2 GD:=Factorization(FF) ;D;/ J  f. [4 [- c
    Quadratic Field with defining polynomial $.1^2 - 10 over the Rational Field: E3 h, |7 k/ e- I4 D, [0 f
    Cyclotomic Field of order 10 and degree 49 r/ j6 `+ G; U# K$ ?
    $.1^4 - $.1^3 + $.1^2 - $.1 + 1
    ; K3 V( r! b% R8 mQuadratic Field with defining polynomial $.1^2 - 10 over the Rational Field
    1 E: A- S; \" H[0 B# s1 e6 {. c5 F  K& _
        <$.1^4 - $.1^3 + $.1^2 - $.1 + 1, 1>" x% L/ s' O5 Y& O
    ]
    回复

    使用道具 举报

    您需要登录后才可以回帖 登录 | 注册地址

    qq
    收缩
    • 电话咨询

    • 04714969085
    fastpost

    关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

    手机版|Archiver| |繁體中文 手机客户端  

    蒙公网安备 15010502000194号

    Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

    GMT+8, 2025-11-8 05:38 , Processed in 0.635123 second(s), 86 queries .

    回顶部