QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 4008|回复: 6
打印 上一主题 下一主题

实二次域(5/50)例2

[复制链接]
字体大小: 正常 放大
lilianjie        

43

主题

4

听众

204

积分

升级  52%

  • TA的每日心情
    开心
    2012-1-13 11:05
  • 签到天数: 15 天

    [LV.4]偶尔看看III

    跳转到指定楼层
    1#
    发表于 2012-1-4 14:05 |只看该作者 |倒序浏览
    |招呼Ta 关注Ta
    本帖最后由 lilianjie 于 2012-1-4 17:59 编辑 : c* U+ n7 r6 o3 K! ]: y  Q

    7 |: r, w0 [5 \4 W' S9 KQ5:=QuadraticField(5) ;; d5 Y$ s6 d$ @3 Z' O0 Y
    Q5;/ f6 d8 i6 g" b
    Q<w> :=PolynomialRing(Q5);Q;
    . P, @3 u/ x4 F- d
    ) c6 k0 k) h0 \- bEquationOrder(Q5);
    2 B* |& H! G- C; F# k7 M% YM:=MaximalOrder(Q5) ;3 |6 A0 K/ f4 D/ O6 a, x8 |1 {
    M;" O3 J0 Q. x! \1 c' i* n, {
    NumberField(M);
    3 g6 ]; `8 `4 E7 hS1:=sub< M | 1 >;S2:=sub< M | 2 >;S3:=sub< M | 3 >;S4:=sub< M | 4 >;S5:=sub< M | 5 >;S25:=sub< M | 25 >;S625888888:=sub< M | 625888888 >;S625888888;! U8 m( i1 Z. P* ?
    IsQuadratic(Q5);IsQuadratic(S1);IsQuadratic(S4);IsQuadratic(S25);IsQuadratic(S625888888);
      f: @, N2 o' I  [6 L6 J7 W8 bFactorization(w^2-3);* X3 ~( N5 I! l0 f
    Discriminant(Q5) ;
    2 D2 J/ }1 i: s. mFundamentalUnit(Q5) ;
    # x( T9 O) n7 K  y# yFundamentalUnit(M);
    4 D7 o7 _" X; @/ FConductor(Q5) ;
    - B" b4 ^! }" o- G1 _2 _Name(Q5, 1);
    - X& v3 K$ q5 g* k! a' y# DName(M, 1);7 H1 m) F3 v- p
    Conductor(M);
    ! e6 h8 q- O- ]5 L9 W5 C# aClassGroup(Q5) ;
    8 Y% s1 k/ X* q3 YClassGroup(M);
    , L  K5 f) P! w+ _) l7 JClassNumber(Q5) ;1 P8 U$ _: Y) l  o
    ClassNumber(M) ;7 q, P( o- W/ P% g$ J
    3 a- [- q, d( s/ I7 H( x
    PicardGroup(M) ;
    # D$ @& C& e$ Y! iPicardNumber(M) ;
    % Y5 D4 N" f' @, P  }2 X. s2 H6 @/ ?+ p: i) T$ D
    * N/ o( h7 \- H8 H6 p8 [# R# r
    QuadraticClassGroupTwoPart(Q5);! O( f( t5 ?6 G* d7 g' Z
    QuadraticClassGroupTwoPart(M);9 \0 Q( C8 }; F8 V& v2 l5 H

    3 S1 u) Q' F4 d& g! }1 `3 q
    ! K: c% U# _% U3 R! x* aNormEquation(Q5, 5) ;4 S( W; L' J6 a* ^
    NormEquation(M, 5) ;
    9 ]- P3 D% v  a, k+ A. V+ A, y2 u. A. |. k, O6 p
    & ?1 f2 R2 d- i3 ]' e$ u. D
    Quadratic Field with defining polynomial $.1^2 - 5 over the Rational Field
    8 h1 S* R, t+ ]8 Q* Z7 R$ uUnivariate Polynomial Ring in w over Q5# X2 x+ D* t2 _8 i
    Equation Order of conductor 2 in Q5
    0 l7 B  a5 z" F# A# b4 d/ fMaximal Order of Q5
    ( j; `" o5 P0 o4 y; l* l$ ^Quadratic Field with defining polynomial $.1^2 - 5 over the Rational Field* A! S9 {2 S8 ]: P
    Order of conductor 625888888 in Q5
      ]& R. o$ E9 a1 h+ [1 mtrue Quadratic Field with defining polynomial $.1^2 - 5 over the Rational Field
    5 i# q- S& u/ m; K2 R! Ztrue Maximal Order of Q59 F0 c8 n2 u9 }( d  K% l0 x9 l
    true Order of conductor 16 in Q5
    % }9 [- _+ B% Y1 ?true Order of conductor 625 in Q5' D2 ?. `1 ^+ B* {1 |! b
    true Order of conductor 391736900121876544 in Q5
    7 b5 S/ d$ ~$ d/ S3 ^$ j[
    . p) G* ^! R: F  m9 A3 n    <w^2 - 3, 1>9 K7 C, M" r. r- n4 t
    ]6 V. \! N; ?  T! V4 g6 v8 O2 x
    5
    % b: W7 Z! R& W1 ~* g( D1/2*(-Q5.1 + 1)
    ) V7 U) N2 N& ]2 Y; f6 u-$.2 + 1
    . q# k6 B- x0 l" p5 m: `8 Z5
    # f3 V2 l0 M. }7 U7 h  Y4 \9 iQ5.1
    ( w+ p. F& a4 g$.2& E- \7 R* [; Z' x8 Q$ J
    1
    % [# x+ @  h% r" }7 b) OAbelian Group of order 15 @4 S. _6 Q& z- Z; \
    Mapping from: Abelian Group of order 1 to Set of ideals of M
    6 b; C" d2 t2 c8 r3 _- RAbelian Group of order 1
    + r7 p% o- v+ }5 ^/ `4 fMapping from: Abelian Group of order 1 to Set of ideals of M; x2 [- k& B. X/ v' H7 H7 {; T
    1
    " k# n6 J2 k# P! M0 ^1' q- I' i0 w# y: Z' f* J; _: H
    Abelian Group of order 1. Z  `4 q1 J/ `; L" v, b
    Mapping from: Abelian Group of order 1 to Set of ideals of M given by a rule [no
    8 r6 u( C" Z" R% R' @+ z( n' u' linverse]2 }( e" |6 |% S! V1 h0 e  p
    1% l5 @5 r0 @& J7 O* }
    Abelian Group of order 1
    ; P# n: V9 @) }( N/ O6 XMapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant
    / x- A& g- A- e" y% ?$ T' Y5 given by a rule [no inverse]
    : I) a& M, d% g- c  M2 ]& a3 [$ wAbelian Group of order 1
    : ^* r. C/ j5 ^( S- R0 iMapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant
    : u. C" Q; {8 W. Q) z9 t5 given by a rule [no inverse]0 _; [( f- o* G- H
    true [ 1/2*(Q5.1 + 5) ]3 r& v, K' I& Z8 A" O
    true [ -2*$.2 + 1 ]
    8 H# `+ @0 Z! \+ A  y- H3 h2 Y3 G( v. c6 c+ A. G2 ]

    . i( j; I* N( Y- I: F/ \9 ], p: s3 K- B5 g
    4 k- I3 U, F/ ~; L- K7 |5 y, R- W' k) l

    $ P: B& @8 S# S9 m  d! G5 U/ F3 L8 a' v, f& t5 a5 s# B5 ]0 w

    1 i+ W6 j5 B; f; }0 g' ^% ^% |  ~5 o) g3 K
    ' U) e8 q# G! G0 n/ N0 ?- B
    # q/ ?, U9 j3 x% I
    5 `/ K: v2 k# F( f1 F
    ==============$ e$ p2 p2 M/ u" [
    $ M+ y1 ]8 L4 A; A, z, Y
    Q5:=QuadraticField(50) ;2 j- i4 b4 V! A( A
    Q5;$ J. Z6 f3 e& f# }0 m

    9 f* ]' m8 K6 R+ BQ<w> :=PolynomialRing(Q5);Q;/ t- e4 b0 ~& Y3 K) p0 ]! t! {
    EquationOrder(Q5);
    . v+ S  G' q6 I% H. eM:=MaximalOrder(Q5) ;
    & F! o  F& |" `M;
    . @2 W9 q; v$ v8 C8 @/ j$ yNumberField(M);
    * Q( V7 A/ B4 g/ u# r+ h0 D6 L  hS1:=sub< M | 1 >;S2:=sub< M | 2 >;S3:=sub< M | 3 >;S4:=sub< M | 4 >;S5:=sub< M | 5 >;S25:=sub< M | 25 >;S625888888:=sub< M | 625888888 >;S625888888;
    ) Z) _* M$ J2 C+ h  d) aIsQuadratic(Q5);
    . W4 w* N. i) A# IIsQuadratic(S1);  H  _( F. \) d. J* Z  b  t
    IsQuadratic(S4);0 z$ a  j  x2 s6 A: W" Q
    IsQuadratic(S25);
    5 E: a5 t& c& }2 T) S3 nIsQuadratic(S625888888);7 Z: x; \; J: T: l) ?$ W: L& I
    Factorization(w^2-50);  
    6 {( A7 e7 f3 l" M* r  p/ sDiscriminant(Q5) ;% j9 v$ }5 V1 C( [8 N
    FundamentalUnit(Q5) ;
    & R- Y! p" |8 H. UFundamentalUnit(M);
    5 T) R. f$ C' pConductor(Q5) ;2 }8 _+ D: C" Q, f" @  T4 r

    / M. u3 S. {) g3 M0 rName(M, 50);
    4 a* \& C0 d, fConductor(M);& h/ h5 |' ~2 P- ~7 e
    ClassGroup(Q5) ;
    1 I4 l" f5 q0 V) h" H1 p8 _ClassGroup(M);
    " F8 Q5 Y, ]  p$ F! pClassNumber(Q5) ;4 l9 {- o( b. O7 B4 V; M4 x
    ClassNumber(M) ;& U% _( }. r; i: G8 j  ~
    PicardGroup(M) ;  q' b" X* e' N$ ^- Y0 H
    PicardNumber(M) ;
    $ \# n) T& ^, Z* q7 ^( r: _9 ~9 ^6 M, O, v+ x, m
    QuadraticClassGroupTwoPart(Q5);  h( k/ g1 G( `! y. T
    QuadraticClassGroupTwoPart(M);
    0 k2 V' ?. ~' _  q6 S1 [NormEquation(Q5, 50) ;: ]1 w3 q2 G# ?
    NormEquation(M, 50) ;6 s3 L1 Q- j9 M/ G# E* L
    % C& H* ], L' m1 X
    Quadratic Field with defining polynomial $.1^2 - 2 over the Rational Field, B0 q6 z" Z) Q# O' r( W& q5 H
    Univariate Polynomial Ring in w over Q5+ f& z4 t+ x, |+ o
    Equation Order of conductor 1 in Q5/ Y  t0 X6 x/ F3 h" z9 d$ i
    Maximal Equation Order of Q5
    2 L7 n" `8 }$ K+ V7 QQuadratic Field with defining polynomial $.1^2 - 2 over the Rational Field1 l. z5 S# }8 l, V" Q3 L
    Order of conductor 625888888 in Q5
    0 c9 W2 U3 c! @7 Ftrue Quadratic Field with defining polynomial $.1^2 - 2 over the Rational Field
    3 @/ V/ {0 K) p; b" R7 }( ntrue Maximal Equation Order of Q5
    ( F$ ?  d# w1 gtrue Order of conductor 1 in Q5
    1 R4 @  }5 @  P. ztrue Order of conductor 1 in Q5
    1 }+ C& V1 W" P2 Z6 v* H- \true Order of conductor 1 in Q5
    2 t. p' `$ O: K* L" j, W[# a; C5 m! m3 `% U2 A  h
        <w - 5*Q5.1, 1>,7 y' S. Z3 U$ T" R: X
        <w + 5*Q5.1, 1>
    & `4 c6 b9 \1 b]
    * l/ Y4 w  W3 _1 Q1 q) P' w8/ Y5 V4 F. V5 [
    Q5.1 + 1
    - a% e! K1 T4 s3 }$ l# B$.2 + 1
      ~0 f8 l1 S" \/ y) t9 z8
    7 ?* D& @9 Q) n; i4 Y) ~, t+ ?
    + U! J# v) z  W3 O9 w7 h>> Name(M, 50);( [# a9 n# O: b& Z/ n: P2 Z! {2 F! i
           ^
    ) ?3 [& `  X. u' x, l  M) P  CRuntime error in 'Name': Argument 2 (50) should be in the range [1 .. 1]
    0 ~8 K1 _  T' ~! k
    9 i4 m, Y; a: ]$ I1 D* ^1
    ) Z) [" \" r6 a3 a' c! QAbelian Group of order 1
    , n* Y8 T. V$ G7 C  g# {* PMapping from: Abelian Group of order 1 to Set of ideals of M& C$ `; }- T& P
    Abelian Group of order 1
    # N  R  Z, d' W8 ZMapping from: Abelian Group of order 1 to Set of ideals of M
    ! [8 D+ j' M7 A13 ~* ?# H$ u' r' a! y
    13 W6 e2 W  P' K& N* C
    Abelian Group of order 1
    , w& u/ E9 v% r: {1 C: w" [Mapping from: Abelian Group of order 1 to Set of ideals of M given by a rule [no+ G0 h4 N1 c+ }+ E
    inverse]2 q# a  Q( Q$ [6 @5 }
    1
    5 @2 V% O# b3 D; q, a' TAbelian Group of order 1" Y: T, F( V$ K4 u" O( e5 U% N
    Mapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant. z5 a7 L$ z: K
    8 given by a rule [no inverse]
    9 L+ W  X+ U0 r. G6 [Abelian Group of order 1
    , y: u# b% }+ c, j" k& [) zMapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant
    1 @/ |# x7 F. H  n1 A- a8 j0 l( `8 given by a rule [no inverse]% e8 u2 e4 h+ T/ T3 t; ]
    true [ 5*Q5.1 + 10 ]
    3 H" x" ^- [$ D" A" G/ ?true [ -5*$.2 ]
    zan
    转播转播0 分享淘帖0 分享分享0 收藏收藏0 支持支持0 反对反对0 微信微信
    lilianjie        

    43

    主题

    4

    听众

    204

    积分

    升级  52%

  • TA的每日心情
    开心
    2012-1-13 11:05
  • 签到天数: 15 天

    [LV.4]偶尔看看III

    二次域上的分歧理论

    1.JPG (177.16 KB, 下载次数: 287)

    1.JPG

    回复

    使用道具 举报

    lilianjie        

    43

    主题

    4

    听众

    204

    积分

    升级  52%

  • TA的每日心情
    开心
    2012-1-13 11:05
  • 签到天数: 15 天

    [LV.4]偶尔看看III

    本帖最后由 lilianjie 于 2012-1-5 12:42 编辑
    ; p' ^  m  A, b: f: T" b  c0 p3 b, n
    基本单位计算fundamentalunit :/ W# V; o8 h6 x' {8 a# n* t
    5 mod4 =1                                              50 mod 4=2
    : n" T1 f2 }. l) A/ E+ t7 c  X
    # G, q; E& a4 C4 h x^2 - 5y^2 = -1.                                 x^2 - 50y^2 = 1.
    2 q- Q, a: e! g) p2 M% C" i0 k% b x^2 - 5y^2 = 1.                                  x^2 - 50y^2 = -1.% A5 c  u3 ]4 u5 v& e. q0 t
    ( x! ]' @; E- P3 g
    2 o# ^, M2 H, Q7 P1 l- z4 ?
    最小整解(±2,±1)                              最小整解(±7,±1)7 x% i( d& ~0 h; y1 I+ f
                                                                 ±7 MOD2=1
    % J: D9 @7 \3 u6 [
    * m4 a/ E! @: s7 @/ @5 ?两个基本单位:

    11.JPG (3.19 KB, 下载次数: 273)

    11.JPG

    回复

    使用道具 举报

    15

    主题

    4

    听众

    113

    积分

    升级  6.5%

  • TA的每日心情
    开心
    2012-1-13 11:49
  • 签到天数: 9 天

    [LV.3]偶尔看看II

    lilianjie 发表于 2012-1-4 18:31
    " `6 f# L1 R& m9 s基本单位fundamentalunit :  \# e, k1 v1 x/ _8 S1 x, y
    5 mod4 =1                              50 mod 4=2
    ) K! u! B6 }0 v) e( _9 o2 K! _6 J
    基本单位fundamentalunit

    3.JPG (105.07 KB, 下载次数: 266)

    3.JPG

    2.JPG (140.29 KB, 下载次数: 272)

    2.JPG

    1.JPG (193.2 KB, 下载次数: 270)

    1.JPG

    回复

    使用道具 举报

    15

    主题

    4

    听众

    113

    积分

    升级  6.5%

  • TA的每日心情
    开心
    2012-1-13 11:49
  • 签到天数: 9 天

    [LV.3]偶尔看看II

    本帖最后由 lilianjie1 于 2012-1-4 19:16 编辑 ( X; a$ U( r( u2 Y

    8 A9 K' ?3 }& r) e判别式计算Discriminant
    1 G5 X8 Q: U  X( H& A% B
    # _- Y% Q3 Z$ W  |. ]% t5MOD 4=1 7 s2 {; q8 n( J5 K9 s6 g

    0 a7 L8 ~7 U7 E(1+1)/2=1          (1-1)/2=0% ]- c) D/ B" W- N7 O

    $ ~& z5 ]1 g( l7 Y. _D=53 U9 t0 g2 V4 u3 N% X5 E0 K
    $ ^, k- i7 j+ U% C1 O
    . |" o2 J9 X7 D; o' D
    50MOD 4=26 N; c8 \4 V- [( t1 J. O
    D=2*4=8

    33.JPG (165.31 KB, 下载次数: 263)

    33.JPG

    22.JPG (137.12 KB, 下载次数: 254)

    22.JPG

    11.JPG (163.36 KB, 下载次数: 294)

    11.JPG

    回复

    使用道具 举报

    74

    主题

    6

    听众

    3295

    积分

    升级  43.17%

  • TA的每日心情
    无聊
    2015-9-4 00:52
  • 签到天数: 374 天

    [LV.9]以坛为家II

    社区QQ达人 邮箱绑定达人 发帖功臣 最具活力勋章

    群组数学建摸协会

    群组Matlab讨论组

    群组小草的客厅

    群组数学建模

    群组LINGO

    回复

    使用道具 举报

    lilianjie        

    43

    主题

    4

    听众

    204

    积分

    升级  52%

  • TA的每日心情
    开心
    2012-1-13 11:05
  • 签到天数: 15 天

    [LV.4]偶尔看看III

    lilianjie 发表于 2012-1-9 20:44
    4 R% T# L. I4 p+ x8 C: e- {6 @) f/ P+ G6 h+ Q$ A
    分圆多项式总是原多项式因子:. f* N' a7 `% h& ?% C5 h( J  g9 d
    C:=CyclotomicField(5);C;
      S9 S1 z3 u$ l; ECyclotomicPolynomial(5);
    : ^9 G' M7 N6 V
    ! @- u* o( O. l$ g( @, M1 s3 O
    分圆域:
    ! k5 I8 H1 j9 F# c. {: T- J分圆域:123
    / U' m+ ]6 P) y# Z. v) t
    , q) ^0 k3 b) i0 ?R.<x> = Q[]! e- s7 l2 g+ ~0 j3 W
    F8 = factor(x^8 - 1)
      {& n' k. A+ I- @& @$ tF8
    ) R: @: Q& y& I2 n# |# @# ?3 Q' v' z+ B; _& Y0 ]( ?1 U' [
    (x - 1) * (x + 1) * (x^2 + 1) * (x^4 + 1)(x - 1) * (x + 1) * (x^2 + 1) * (x^4 + 1)
    $ T: O& o" W, |+ b# {/ Y5 r. L
    5 Y$ t5 d- p" B4 X4 q4 z  T1 ]Q<x> := QuadraticField(8);Q;
    - J9 V& \. h2 f0 WC:=CyclotomicField(8);C;/ S, h; c: @8 f* P
    FF:=CyclotomicPolynomial(8);FF;5 l2 v. T% n2 v4 d1 t

    % U$ l' E7 k4 N7 Y8 z& PF := QuadraticField(8);
    9 M6 L. ^" c7 C2 k+ {; b3 a$ O% J; j4 nF;; ^- K: B- r- @/ M& ~# s
    D:=Factorization(FF) ;D;
    / [) v+ z$ j2 z5 B1 f+ W# ~Quadratic Field with defining polynomial $.1^2 - 2 over the Rational Field
    # C/ ]' A1 V2 g1 O$ sCyclotomic Field of order 8 and degree 49 g$ k$ B" s( E- G
    $.1^4 + 1
    % H) i. {0 d  f' ^: yQuadratic Field with defining polynomial $.1^2 - 2 over the Rational Field
    ; z$ T( a  P) u; J0 h[
    + b' C- j% ?8 P$ A% q% g- `    <$.1^4 + 1, 1>
    6 S2 G0 S# A3 T+ I# i]9 R6 F; Z- |6 K1 ^2 H
    7 p6 D0 [& X& {- V4 s5 o9 }2 o1 Z
    R.<x> = QQ[]* x- |+ A. b# A0 N- H
    F6 = factor(x^6 - 1)
    # h5 ~& |3 k+ S' l2 kF6
    9 t# [7 z  p" g1 \7 A2 G1 D- T( b- X" R' j7 d' G- m1 K
    (x - 1) * (x + 1) * (x^2 - x + 1) * (x^2 + x + 1)(x - 1) * (x + 1) * (x^2 - x + 1) * (x^2 + x + 1)
    7 p: G1 E! O) G. A) Y# F  |9 g
    $ x7 M5 ?: `/ z) g( X) U* uQ<x> := QuadraticField(6);Q;
      K5 K9 V5 K1 A( M; lC:=CyclotomicField(6);C;
    ( q& b$ n5 m7 K' V: w9 bFF:=CyclotomicPolynomial(6);FF;# a' g: ]2 ?9 O, Z4 A
    # c. i' u2 |( n# r, c' Y
    F := QuadraticField(6);  r% K' m/ R/ a5 A7 Q+ m
    F;- X; Z+ [5 v9 [. f/ E
    D:=Factorization(FF) ;D;
    ( B! M" g# {8 ^4 c* \Quadratic Field with defining polynomial $.1^2 - 6 over the Rational Field
    & p7 V4 {3 G  e( ~7 o& X" ACyclotomic Field of order 6 and degree 2# Q7 n( }& m. R; j4 D4 `; a  r
    $.1^2 - $.1 + 1
    ' W: J) ~# A9 T$ z2 u8 S7 U/ VQuadratic Field with defining polynomial $.1^2 - 6 over the Rational Field
    - c5 T5 y; Y8 Q3 ]# l[
    " ]1 Q# @/ a# O: q0 q8 z    <$.1^2 - $.1 + 1, 1>
    5 v+ \4 }5 b0 x# f+ I0 @; T* A]+ G2 w# ]- Z, T

    1 X8 O3 ~4 e5 r: A$ @R.<x> = QQ[]
    1 c9 ~3 @3 p. q9 g% w; o3 X1 v) A; YF5 = factor(x^10 - 1)
    / p( s/ O2 r! [7 h2 O0 aF5
    2 L( J3 s% f8 N(x - 1) * (x + 1) * (x^4 - x^3 + x^2 - x + 1) * (x^4 + x^3 + x^2 + x +
    * q( }% O5 w5 [' c$ u- a) j1)(x - 1) * (x + 1) * (x^4 - x^3 + x^2 - x + 1) * (x^4 + x^3 + x^2 + x + 1)
    5 T" i' g2 T4 A; X9 z6 s; ]7 w/ S, M
    Q<x> := QuadraticField(10);Q;
    " v+ l* i* L$ K" KC:=CyclotomicField(10);C;3 j- M+ d, Y& V4 T' Z7 p* T
    FF:=CyclotomicPolynomial(10);FF;
    ( t! e( I7 R  F4 ]( G6 X# F0 `' a: R4 H
    F := QuadraticField(10);
    6 n; v- Z' C0 K- qF;
    " q' M2 @# ^: v) P0 g$ cD:=Factorization(FF) ;D;  N1 \6 U' o/ a$ S8 s; [
    Quadratic Field with defining polynomial $.1^2 - 10 over the Rational Field0 ]! F: ^" c" h- X. z/ W- o
    Cyclotomic Field of order 10 and degree 4
    * x' {) R, `' G1 W$ P3 M$.1^4 - $.1^3 + $.1^2 - $.1 + 1. u( R$ m) O- b; E
    Quadratic Field with defining polynomial $.1^2 - 10 over the Rational Field6 Z  W9 J  S$ }5 \+ H* r* S, P% p' T
    [
    $ Q1 ]4 t; A+ w# n5 b! F    <$.1^4 - $.1^3 + $.1^2 - $.1 + 1, 1>- v; P$ J' T, L' z  Z. L; A
    ]
    回复

    使用道具 举报

    您需要登录后才可以回帖 登录 | 注册地址

    qq
    收缩
    • 电话咨询

    • 04714969085
    fastpost

    关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

    手机版|Archiver| |繁體中文 手机客户端  

    蒙公网安备 15010502000194号

    Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

    GMT+8, 2025-11-8 00:03 , Processed in 3.087660 second(s), 86 queries .

    回顶部