7 |: r, w0 [5 \4 W' S9 KQ5:=QuadraticField(5) ;; d5 Y$ s6 d$ @3 Z' O0 Y
Q5;/ f6 d8 i6 g" b
Q<w> :=PolynomialRing(Q5);Q; . P, @3 u/ x4 F- d ) c6 k0 k) h0 \- bEquationOrder(Q5); 2 B* |& H! G- C; F# k7 M% YM:=MaximalOrder(Q5) ;3 |6 A0 K/ f4 D/ O6 a, x8 |1 {
M;" O3 J0 Q. x! \1 c' i* n, {
NumberField(M); 3 g6 ]; `8 `4 E7 hS1:=sub< M | 1 >;S2:=sub< M | 2 >;S3:=sub< M | 3 >;S4:=sub< M | 4 >;S5:=sub< M | 5 >;S25:=sub< M | 25 >;S625888888:=sub< M | 625888888 >;S625888888;! U8 m( i1 Z. P* ?
IsQuadratic(Q5);IsQuadratic(S1);IsQuadratic(S4);IsQuadratic(S25);IsQuadratic(S625888888); f: @, N2 o' I [6 L6 J7 W8 bFactorization(w^2-3);* X3 ~( N5 I! l0 f
Discriminant(Q5) ; 2 D2 J/ }1 i: s. mFundamentalUnit(Q5) ; # x( T9 O) n7 K y# yFundamentalUnit(M); 4 D7 o7 _" X; @/ FConductor(Q5) ; - B" b4 ^! }" o- G1 _2 _Name(Q5, 1); - X& v3 K$ q5 g* k! a' y# DName(M, 1);7 H1 m) F3 v- p
Conductor(M); ! e6 h8 q- O- ]5 L9 W5 C# aClassGroup(Q5) ; 8 Y% s1 k/ X* q3 YClassGroup(M); , L K5 f) P! w+ _) l7 JClassNumber(Q5) ;1 P8 U$ _: Y) l o
ClassNumber(M) ;7 q, P( o- W/ P% g$ J
3 a- [- q, d( s/ I7 H( x
PicardGroup(M) ; # D$ @& C& e$ Y! iPicardNumber(M) ; % Y5 D4 N" f' @, P }2 X. s2 H6 @/ ?+ p: i) T$ D
* N/ o( h7 \- H8 H6 p8 [# R# r
QuadraticClassGroupTwoPart(Q5);! O( f( t5 ?6 G* d7 g' Z
QuadraticClassGroupTwoPart(M);9 \0 Q( C8 }; F8 V& v2 l5 H
3 S1 u) Q' F4 d& g! }1 `3 q ! K: c% U# _% U3 R! x* aNormEquation(Q5, 5) ;4 S( W; L' J6 a* ^
NormEquation(M, 5) ; 9 ]- P3 D% v a, k+ A. V+ A, y2 u. A. |. k, O6 p
& ?1 f2 R2 d- i3 ]' e$ u. D
Quadratic Field with defining polynomial $.1^2 - 5 over the Rational Field 8 h1 S* R, t+ ]8 Q* Z7 R$ uUnivariate Polynomial Ring in w over Q5# X2 x+ D* t2 _8 i
Equation Order of conductor 2 in Q5 0 l7 B a5 z" F# A# b4 d/ fMaximal Order of Q5 ( j; `" o5 P0 o4 y; l* l$ ^Quadratic Field with defining polynomial $.1^2 - 5 over the Rational Field* A! S9 {2 S8 ]: P
Order of conductor 625888888 in Q5 ]& R. o$ E9 a1 h+ [1 mtrue Quadratic Field with defining polynomial $.1^2 - 5 over the Rational Field 5 i# q- S& u/ m; K2 R! Ztrue Maximal Order of Q59 F0 c8 n2 u9 }( d K% l0 x9 l
true Order of conductor 16 in Q5 % }9 [- _+ B% Y1 ?true Order of conductor 625 in Q5' D2 ?. `1 ^+ B* {1 |! b
true Order of conductor 391736900121876544 in Q5 7 b5 S/ d$ ~$ d/ S3 ^$ j[ . p) G* ^! R: F m9 A3 n <w^2 - 3, 1>9 K7 C, M" r. r- n4 t
]6 V. \! N; ? T! V4 g6 v8 O2 x
5 % b: W7 Z! R& W1 ~* g( D1/2*(-Q5.1 + 1) ) V7 U) N2 N& ]2 Y; f6 u-$.2 + 1 . q# k6 B- x0 l" p5 m: `8 Z5 # f3 V2 l0 M. }7 U7 h Y4 \9 iQ5.1 ( w+ p. F& a4 g$.2& E- \7 R* [; Z' x8 Q$ J
1 % [# x+ @ h% r" }7 b) OAbelian Group of order 15 @4 S. _6 Q& z- Z; \
Mapping from: Abelian Group of order 1 to Set of ideals of M 6 b; C" d2 t2 c8 r3 _- RAbelian Group of order 1 + r7 p% o- v+ }5 ^/ `4 fMapping from: Abelian Group of order 1 to Set of ideals of M; x2 [- k& B. X/ v' H7 H7 {; T
1 " k# n6 J2 k# P! M0 ^1' q- I' i0 w# y: Z' f* J; _: H
Abelian Group of order 1. Z `4 q1 J/ `; L" v, b
Mapping from: Abelian Group of order 1 to Set of ideals of M given by a rule [no 8 r6 u( C" Z" R% R' @+ z( n' u' linverse]2 }( e" |6 |% S! V1 h0 e p
1% l5 @5 r0 @& J7 O* }
Abelian Group of order 1 ; P# n: V9 @) }( N/ O6 XMapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant / x- A& g- A- e" y% ?$ T' Y5 given by a rule [no inverse] : I) a& M, d% g- c M2 ]& a3 [$ wAbelian Group of order 1 : ^* r. C/ j5 ^( S- R0 iMapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant : u. C" Q; {8 W. Q) z9 t5 given by a rule [no inverse]0 _; [( f- o* G- H
true [ 1/2*(Q5.1 + 5) ]3 r& v, K' I& Z8 A" O
true [ -2*$.2 + 1 ] 8 H# `+ @0 Z! \+ A y- H3 h2 Y3 G( v. c6 c+ A. G2 ]
. i( j; I* N( Y- I: F/ \9 ], p: s3 K- B5 g
4 k- I3 U, F/ ~; L- K7 |5 y, R- W' k) l
$ P: B& @8 S# S9 m d! G5 U/ F3 L8 a' v, f& t5 a5 s# B5 ]0 w
1 i+ W6 j5 B; f; }0 g' ^% ^% | ~5 o) g3 K
' U) e8 q# G! G0 n/ N0 ?- B
# q/ ?, U9 j3 x% I
5 `/ K: v2 k# F( f1 F
==============$ e$ p2 p2 M/ u" [
$ M+ y1 ]8 L4 A; A, z, Y
Q5:=QuadraticField(50) ;2 j- i4 b4 V! A( A
Q5;$ J. Z6 f3 e& f# }0 m
9 f* ]' m8 K6 R+ BQ<w> :=PolynomialRing(Q5);Q;/ t- e4 b0 ~& Y3 K) p0 ]! t! {
EquationOrder(Q5); . v+ S G' q6 I% H. eM:=MaximalOrder(Q5) ; & F! o F& |" `M; . @2 W9 q; v$ v8 C8 @/ j$ yNumberField(M); * Q( V7 A/ B4 g/ u# r+ h0 D6 L hS1:=sub< M | 1 >;S2:=sub< M | 2 >;S3:=sub< M | 3 >;S4:=sub< M | 4 >;S5:=sub< M | 5 >;S25:=sub< M | 25 >;S625888888:=sub< M | 625888888 >;S625888888; ) Z) _* M$ J2 C+ h d) aIsQuadratic(Q5); . W4 w* N. i) A# IIsQuadratic(S1); H _( F. \) d. J* Z b t
IsQuadratic(S4);0 z$ a j x2 s6 A: W" Q
IsQuadratic(S25); 5 E: a5 t& c& }2 T) S3 nIsQuadratic(S625888888);7 Z: x; \; J: T: l) ?$ W: L& I
Factorization(w^2-50); 6 {( A7 e7 f3 l" M* r p/ sDiscriminant(Q5) ;% j9 v$ }5 V1 C( [8 N
FundamentalUnit(Q5) ; & R- Y! p" |8 H. UFundamentalUnit(M); 5 T) R. f$ C' pConductor(Q5) ;2 }8 _+ D: C" Q, f" @ T4 r
/ M. u3 S. {) g3 M0 rName(M, 50); 4 a* \& C0 d, fConductor(M);& h/ h5 |' ~2 P- ~7 e
ClassGroup(Q5) ; 1 I4 l" f5 q0 V) h" H1 p8 _ClassGroup(M); " F8 Q5 Y, ] p$ F! pClassNumber(Q5) ;4 l9 {- o( b. O7 B4 V; M4 x
ClassNumber(M) ;& U% _( }. r; i: G8 j ~
PicardGroup(M) ; q' b" X* e' N$ ^- Y0 H
PicardNumber(M) ; $ \# n) T& ^, Z* q7 ^( r: _9 ~9 ^6 M, O, v+ x, m
QuadraticClassGroupTwoPart(Q5); h( k/ g1 G( `! y. T
QuadraticClassGroupTwoPart(M); 0 k2 V' ?. ~' _ q6 S1 [NormEquation(Q5, 50) ;: ]1 w3 q2 G# ?
NormEquation(M, 50) ;6 s3 L1 Q- j9 M/ G# E* L
% C& H* ], L' m1 X
Quadratic Field with defining polynomial $.1^2 - 2 over the Rational Field, B0 q6 z" Z) Q# O' r( W& q5 H
Univariate Polynomial Ring in w over Q5+ f& z4 t+ x, |+ o
Equation Order of conductor 1 in Q5/ Y t0 X6 x/ F3 h" z9 d$ i
Maximal Equation Order of Q5 2 L7 n" `8 }$ K+ V7 QQuadratic Field with defining polynomial $.1^2 - 2 over the Rational Field1 l. z5 S# }8 l, V" Q3 L
Order of conductor 625888888 in Q5 0 c9 W2 U3 c! @7 Ftrue Quadratic Field with defining polynomial $.1^2 - 2 over the Rational Field 3 @/ V/ {0 K) p; b" R7 }( ntrue Maximal Equation Order of Q5 ( F$ ? d# w1 gtrue Order of conductor 1 in Q5 1 R4 @ }5 @ P. ztrue Order of conductor 1 in Q5 1 }+ C& V1 W" P2 Z6 v* H- \true Order of conductor 1 in Q5 2 t. p' `$ O: K* L" j, W[# a; C5 m! m3 `% U2 A h
<w - 5*Q5.1, 1>,7 y' S. Z3 U$ T" R: X
<w + 5*Q5.1, 1> & `4 c6 b9 \1 b] * l/ Y4 w W3 _1 Q1 q) P' w8/ Y5 V4 F. V5 [
Q5.1 + 1 - a% e! K1 T4 s3 }$ l# B$.2 + 1 ~0 f8 l1 S" \/ y) t9 z8 7 ?* D& @9 Q) n; i4 Y) ~, t+ ? + U! J# v) z W3 O9 w7 h>> Name(M, 50);( [# a9 n# O: b& Z/ n: P2 Z! {2 F! i
^ ) ?3 [& ` X. u' x, l M) P CRuntime error in 'Name': Argument 2 (50) should be in the range [1 .. 1] 0 ~8 K1 _ T' ~! k 9 i4 m, Y; a: ]$ I1 D* ^1 ) Z) [" \" r6 a3 a' c! QAbelian Group of order 1 , n* Y8 T. V$ G7 C g# {* PMapping from: Abelian Group of order 1 to Set of ideals of M& C$ `; }- T& P
Abelian Group of order 1 # N R Z, d' W8 ZMapping from: Abelian Group of order 1 to Set of ideals of M ! [8 D+ j' M7 A13 ~* ?# H$ u' r' a! y
13 W6 e2 W P' K& N* C
Abelian Group of order 1 , w& u/ E9 v% r: {1 C: w" [Mapping from: Abelian Group of order 1 to Set of ideals of M given by a rule [no+ G0 h4 N1 c+ }+ E
inverse]2 q# a Q( Q$ [6 @5 }
1 5 @2 V% O# b3 D; q, a' TAbelian Group of order 1" Y: T, F( V$ K4 u" O( e5 U% N
Mapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant. z5 a7 L$ z: K
8 given by a rule [no inverse] 9 L+ W X+ U0 r. G6 [Abelian Group of order 1 , y: u# b% }+ c, j" k& [) zMapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant 1 @/ |# x7 F. H n1 A- a8 j0 l( `8 given by a rule [no inverse]% e8 u2 e4 h+ T/ T3 t; ]
true [ 5*Q5.1 + 10 ] 3 H" x" ^- [$ D" A" G/ ?true [ -5*$.2 ]