QQ登录

只需要一步,快速开始

 注册地址  找回密码
12
返回列表 发新帖
楼主: 素数516466
打印 上一主题 下一主题

科 学 家 的 智 慧——关于合数的分解

[复制链接]
字体大小: 正常 放大

12

主题

5

听众

703

积分

升级  25.75%

  • TA的每日心情
    开心
    2016-6-7 21:23
  • 签到天数: 196 天

    [LV.7]常住居民III

    11#
    发表于 2013-11-2 13:08 |只看该作者
    |招呼Ta 关注Ta
    在正整数范围,奇合数A满足: A= T^2-D,设PQ是数A的两个分解因子,且P<Q;把T^2称为临点完全平方数,T称为数A的临点平方根数,简称为根数;D称为分解数A的黄金数。在所有奇合数中,必存在较大因子等于其根数两倍与3的差(即Q=2T-3)的奇合数链,我们把符合这个结论的奇合数链统称为“孪生”奇合数链,其中一条“孪生”数链表达式为A=16c^2+6c-1;
    回复

    使用道具 举报

    12

    主题

    5

    听众

    703

    积分

    升级  25.75%

  • TA的每日心情
    开心
    2016-6-7 21:23
  • 签到天数: 196 天

    [LV.7]常住居民III

    9楼有误,修正如下:  |+ B% d8 V4 Z( T, ~
    最有价值的因子数链
    ) ^. x- B: n/ {海南省乐东保显学校  陈泽辉/ C  }7 a! M: [8 E' w

    8 h# Q1 U9 P# Y. Y我们知道,在整数范围内,偶数可以用式子2x表示;奇数可以用2x-1表示。我们还知道所有的偶数都有公因数2,但是想要对一个奇数进行分解往往不是一件很容易的事。
    4 o2 i- |* `1 {, T- a+ ~/ x# `3 D, M笔者在探究奇数分解的过程中,发现两条有趣的“孪生”奇合数数链:在正整数范围,奇合数A满足: A= T^2-D,设PQ是数A的两个分解因子,且P<Q;把T^2称为临点完全平方数,T称为数A的临点平方根数,简称为根数;D称为分解数A的黄金数。如果数A属于数链A=16c^2+6c-1或A=16c^2+10c+1,那么数A较小的因子等于2 c+1;数A较大的因子等于它的根数的两倍与3的差。我把数链A=16c^2+6c-1与A=16c^2+10c+1称为“孪生”因子数链。
    * O6 D8 U+ [) `5 l- }如第一因子数链数A=16c^2+6c-1,当c=1、2、3、4……,则奇合数A=21、75、161、279……, 因为有21=5^2-4、75=9^-6、161=13^-8、279=17^-10、……那么奇合数21、75、161、279……较小的因子是2 c+1即3、5、7、9……;较大的因子是2 T-3即2×5-3=7、2×9-3=15、2×13-3=23、2×17-3=31……
    , S, p/ ?7 i! K) U" h4 p如第二因子数链数A=16c^2+10c+1,当c=1、2、3、4……,则奇合数A=……, 因为有27=6^2-9、85=10^-15、175=14^-21、297=18^-27、……那么奇合数27、85、175、297……较小的因子是2 c+1即3、5、7、9……;较大的因子是2 T-3即2×6-3=9、2×10-3=17、2×14-3=25、2×18-3=33……
    ( j" x. T# K' M8 v3 Q" a( T因为数链A1=16c^2+6c-1与A2=16c^2+10c+1对应c值时,数A的值刚好相差2 c+1的两倍,所以把数链A1=16c^2+6c-1与A2=16c^2+10c+1称为“孪生”数链;又因为这两条数链上数的较小因子依次是不小3的奇数,所以称该“孪生”数链为有价值的因子数链。' }, E- z1 Z- M7 L  C
    可以肯定的是,这给某些较大的奇合数的分解带来了极大的方便。但是我们也要知道,这两条奇合数链上的数是极其少的,因此它不是所有奇合数的分解表达式。笔者通过许多检验,发现奇合数的分解亦主要以这两条数链为中心展开。
      A2 `% f' p1 Z6 j  |
    回复

    使用道具 举报

    12

    主题

    5

    听众

    703

    积分

    升级  25.75%

  • TA的每日心情
    开心
    2016-6-7 21:23
  • 签到天数: 196 天

    [LV.7]常住居民III

    9楼有误,修正如下:
    & [' P1 j: ~* W  |1 t% Y
    ( h2 g+ L7 N+ r" P  W, W3 k最有价值的因子数链4 J  M' Z& B! B1 l: l+ j
    海南省乐东保显学校  陈泽辉/ ^5 v2 A' Y8 F6 g6 b  P
    6 {4 {0 P* a$ {- `& ^0 x8 k' g( N
    我们知道,在整数范围内,偶数可以用式子2x表示;奇数可以用2x-1表示。我们还知道所有的偶数都有公因数2,但是想要对一个奇数进行分解往往不是一件很容易的事。  y- {1 d; @: `1 J
    笔者在探究奇数分解的过程中,发现两条有趣的“孪生”奇合数数链:在正整数范围,奇合数A满足: A= T^2-D,设PQ是数A的两个分解因子,且P<Q;把T^2称为临点完全平方数,T称为数A的临点平方根数,简称为根数;D称为分解数A的黄金数。如果数A属于数链A=16c^2+6c-1或A=16c^2+10c+1,那么数A较小的因子等于2 c+1;数A较大的因子等于它的根数的两倍与3的差。我把数链A=16c^2+6c-1与A=16c^2+10c+1称为“孪生”因子数链。1 ?1 |& n; T. Q! C/ g9 f0 U/ j
    如第一因子数链数A=16c^2+6c-1,当c=1、2、3、4……,则奇合数A=21、75、161、279……, 因为有21=5^2-4、75=9^-6、161=13^-8、279=17^-10、……那么奇合数21、75、161、279……较小的因子是2 c+1即3、5、7、9……;较大的因子是2 T-3即2×5-3=7、2×9-3=15、2×13-3=23、2×17-3=31……
    4 N0 b$ Y4 j/ J6 y0 Y如第二因子数链数A=16c^2+10c+1,当c=1、2、3、4……,则奇合数A=……, 因为有27=6^2-9、85=10^-15、175=14^-21、297=18^-27、……那么奇合数27、85、175、297……较小的因子是2 c+1即3、5、7、9……;较大的因子是2 T-3即2×6-3=9、2×10-3=17、2×14-3=25、2×18-3=33……* A& X2 Z- g3 @  |% G, e0 }5 c) b
    因为数链A1=16c^2+6c-1与A2=16c^2+10c+1对应c值时,数A的值刚好相差2 c+1的两倍,所以把数链A1=16c^2+6c-1与A2=16c^2+10c+1称为“孪生”数链;又因为这两条数链上数的较小因子依次是不小3的奇数,所以称该“孪生”数链为有价值的因子数链。  Y) x4 m9 r* D$ m$ p2 \
    可以肯定的是,这给某些较大的奇合数的分解带来了极大的方便。但是我们也要知道,这两条奇合数链上的数是极其少的,因此它不是所有奇合数的分解表达式。笔者通过许多检验,发现奇合数的分解亦主要以这两条数链为中心展开。. J4 G! ^3 @, K1 r+ P
    回复

    使用道具 举报

    您需要登录后才可以回帖 登录 | 注册地址

    qq
    收缩
    • 电话咨询

    • 04714969085
    fastpost

    关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

    手机版|Archiver| |繁體中文 手机客户端  

    蒙公网安备 15010502000194号

    Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

    GMT+8, 2025-7-12 23:24 , Processed in 0.804219 second(s), 59 queries .

    回顶部