- 在线时间
- 367 小时
- 最后登录
- 2015-10-7
- 注册时间
- 2012-4-4
- 听众数
- 29
- 收听数
- 0
- 能力
- 0 分
- 体力
- 2850 点
- 威望
- 0 点
- 阅读权限
- 60
- 积分
- 1102
- 相册
- 1
- 日志
- 1
- 记录
- 1
- 帖子
- 515
- 主题
- 26
- 精华
- 0
- 分享
- 0
- 好友
- 96
TA的每日心情 | 衰 2014-6-9 20:45 |
---|
签到天数: 290 天 [LV.8]以坛为家I
 群组: Matlab讨论组 群组: 2013年数学建模国赛备 |
\documentclass[twoside,a4paper,CCT]{cctart} % 这是Li Dongfeng改的文件头
6 d( m# _, ]- q, @8 M\usepackage{amsmath,amsthm,vatola,makeidx,amssymb,amscd,headrule} % 这是Li Dongfeng改的文件头+ r& z; D0 U a/ h
\usepackage{amsfonts} % 这是Li Dongfeng改的文件头- I& a* Q! F: [5 r4 h5 \
%\documentstyle[twoside,headrule,vatola]{carticle} %这是原来的文件头2 a0 U+ n) w1 }& a/ l: z! K
%\input amssym.def6 c/ {9 s0 g, o* k+ W' B2 ~& `: B0 [) p
\usepackage{graphicx} %这是原来的文件头. y ~# j1 C& {$ t! X
\input scrload.tex %调用花体字: {\scr A,B,C,...}
$ b+ v! G0 g0 I7 g%--------------------------Page Format--------------------------# E' F6 s$ a. ~/ ]4 |) L3 N# }
\headsep 0.2 true cm \topmargin 0pt \oddsidemargin 0pt \footskip9 m5 U' A& p# W# _& r8 `
2mm \evensidemargin 0pt \textheight 21 true cm \textwidth 14.7: ^+ E- F$ j/ Y7 [8 v1 c! @+ m! D1 v
true cm \setcounter{page}{502}
* M1 L' T' K7 q8 |% w1 t- X( }%\parskip 0.2cm: N) c. ?5 V6 o" p$ \: Z# F
\parindent 2\ccwd
! n D2 N: j7 R. r- Y\nofiles
+ d; e# w$ p/ x3 F. L%---------------------------------------------------------------/ P) @9 _: z7 p$ i- L4 h7 _
\def\sec#1{
1 |. X+ [4 `) D; y\vskip.12in \noindent{\Large\bf\zihao{-4}\heiti #1} \vskip.1in}# a6 k5 r4 N$ G ~
\def\subsec#1{, w9 s/ u! q! ~. m+ P: h
\vskip.1in \flushpar{\zihao{5}\heiti #1} \vskip.1in}
$ Q* i: b- p/ F8 W$ G\def\de#1{{\heiti\bf #1}\quad}
' l* s$ }( @& W3 e% |0 F
' X! @& j/ E: s$ U( F; f\begin{document}
2 T# {4 M! U- T& }# o! @. [# l\TagsOnRight \abovedisplayskip=10.0pt plus 2.0pt minus 2.0pt2 W/ Q1 r% j A/ h+ O: a5 ^
\belowdisplayskip=10.0pt plus 2.0pt minus 2.0pt1 j" z% V' \; _$ {
%====================================================================3 ?: j% x* S, `# g- h9 r
\catcode`@=11 \long\def\@makefntext#1{\parindent 1em\noindent
l* E1 E" K. n/ ?4 A3 L' F\hbox to 0pt{\hss$^{}$}#1} \catcode`\@=12
; N3 o+ q) \8 }: o%====================================================================
6 U# n0 H, X- @* S- m, P5 e
0 ]9 }0 e& ~7 B* X; E, h6 C9 h\renewcommand{\baselinestretch}{1.0}
9 ]4 [" J' x2 |0 S# S( v; Q- H
; F, M) A1 s# W& O1 K. _. Q: b: n. g2 P$ @
\newfont{\htxt}{eufm10 scaled \magstep0}
2 _& |: M9 p( H/ w' h6 `8 J _%\newfam\euffam8 n% _% w8 \- h$ B- a$ |) I
\font\tenthxt=eufm10 scaled \magstep0 \font\tenBbb=msbm10 scaled
; _" ^7 S# R, G\magstep0 \font\tencyr=wncyr10 scaled \magstep0 \font\tenrm=cmr10 O0 v& G) l/ |/ g3 k& R
scaled \magstep0 \font\tenbf=cmb10 scaled \magstep0
# l2 H4 b6 u* ]/ x& X
' R% P6 V' A8 Y6 N7 }. |. G" [' m
7 X' w* ]0 V8 l& E, Q9 E\def\cyr{\tencyr}
" g. n& c7 Z- B$ K. s%\def\cyw{\eightcyr}
' n" P. g8 f- Q- f% k: e2 t%\def\Bbb{\tenBbb}
8 ~4 ^( n7 V: z1 ?/ P%\def\bbb{\eightcyr}) _ P8 c" H$ M$ t
%\def\txt{\tenthxt}
# F! x% r Q5 j& c5 O6 V L4 [3 s" X- t! K4 ^9 _
\def\ST{\songti\rm\relax}" b9 F4 O0 M- x$ T' x1 t
\def\HT{\heiti\bf\relax}
' R7 m" f4 B6 r, v( G/ i# k$ \$ x) X\def\FS{\fangsong\relax}
G% f6 f- Z. G9 {) M" n' b2 |\def\KS{\kaishu\relax}
4 c8 m. z, ^7 J) [- q\def\text#1{\hbox{\,#1\,}}$ Z$ ^& J! l& V& f& a7 s; q
\def\pmb#1{\mbox{\boldmath $#1$}}
3 F5 |- J- Q5 l* i0 b- |0 S\def\Cal#1{{\cal #1}}
# F' }' z- h& M6 S+ w" D* F1 w! V$ O
) r4 ?: Z( J7 m; |$ I6 o8 J\def\CA{\Cal A}; S# g: B2 Q. n
\def\CB{\Cal B}
% E* i" g- K# e6 ^\def\cC{\Cal C}; M! ?4 K% m H1 m' e% ^% Q
\def\CD{\Cal D}6 |- o* y; d7 _: f
\def\CE{\Cal E}
8 }) B# B& |5 E! n: i\def\CF{\Cal F}
* _) W: o" E. v' @) H2 Y, b: t\def\CG{\Cal G}8 ^2 Z& k; O! U3 l. j7 \
\def\CH{\Cal H}2 K" B R( H# @' a. U- o+ _4 ^
\def\CI{\Cal I}4 A l. _+ n: `8 D, }: X) p
\def\CJ{\Cal J}! ?* j+ z; Q) @ s4 g" e& w2 ^0 R
\def\CK{\Cal K}
; B' w2 W% w4 ^ m; |' c' V\def\CL{\Cal L}* p( O4 u3 Q4 c/ P
\def\CM{\Cal M}
( e4 {* t+ \' n$ M7 _7 ^3 Y: t- a\def\CN{\Cal N}: q0 M; l1 W; i2 N) x$ i3 z
\def\CO{\Cal O}4 ?( x+ X" o" `4 g- H& n4 m* g* @
\def\CP{\Cal P}. e; l, T2 x1 m' S! `
\def\CQ{\Cal Q}( R F0 V2 J: g8 {& d
\def\CR{\Cal R}
; ]- J" e5 i& L R) z\def\CS{\Cal S}
g3 ?# ~: ^. W1 C9 h0 s) |, V" q\def\CT{\Cal T}
! Y. M& [- ]( k o& N8 l\def\CU{\Cal U}( o1 o/ Y8 l* |& q/ N1 _" s: w
\def\CV{\Cal V}( D+ I& e& E6 c0 D: i) G
\def\CW{\Cal W}
- @2 b7 f# n5 x7 [; U$ _\def\CX{\Cal X}
' H$ x& i4 _ N& |: X6 t& j\def\CY{\Cal Y}
8 r4 S! {% a. j u\def\CZ{\Cal Z}% T, w, i) x% ?2 y+ [$ ^
\def\BA {\hbox{\Bbb A}}5 J4 O/ \% o9 u- ?6 L7 }2 D3 [
\def\BB {\hbox{\Bbb B}}) b. }# ^" |) q7 T& V- a
\def\BC {\hbox{\Bbb C}} D' P; M9 Q- R/ B2 f2 @. z+ C1 E
\def\BD {\hbox{\Bbb D}}, D" U. u* _( p5 ]+ c
\def\BE {\hbox{\Bbb E}}
( G& X- H( e$ A5 |) `' r$ s- I& L5 v\def\BF {\hbox{\Bbb F}}2 E q" N/ M- L% r, i H! `
\def\BG {\hbox{\Bbb G}}+ p s3 b3 {) ~( S8 Z# X
\def\BI {\hbox{\Bbb I}}8 V8 Y( J! X$ w* P- L) Q! p7 i
\def\BJ {\hbox{\Bbb J}}
, N: M0 [& R% O$ p) {9 f\def\BK {\hbox{\Bbb K}}5 t5 F. m+ n! X q. H
\def\BL {\hbox{\Bbb L}}
4 f/ a& w) R3 Y; d+ L/ Y\def\BM {\hbox{\Bbb M}}
5 g* o5 Z2 _( L4 d9 w+ M7 G\def\BN {\hbox{\Bbb N}}- r. o" U; E4 A! a- h6 L0 e+ H
\def\BO {\hbox{\Bbb O}}0 g% H2 R% \" s- _2 @5 o8 o& F
\def\BP {\hbox{\Bbb P}}
; {( \* U! O: |$ g( m\def\BQ {\hbox{\Bbb Q}}
$ ^8 t2 _0 o( c. s\def\BR {\hbox{\Bbb R}}
1 @4 ]; [9 w/ f\def\BS {\hbox{\Bbb S}}! L- c# q2 o( O
\def\BT {\hbox{\Bbb T}}$ b8 o$ E5 ^1 p8 S
\def\BU {\hbox{\Bbb U}}: C) Z3 t/ o& [7 J: Y a; h' [; j: c
\def\BV {\hbox{\Bbb V}}
" V1 C" n4 d& q' k+ T\def\BW {\hbox{\Bbb W}}
$ f& Y$ P: ?# Z* ~- K5 W\def\BX {\hbox{\Bbb X}}% C+ d. m+ x3 O& m1 V1 M
\def\BY {\hbox{\Bbb Y}}
8 `) z( p& V$ D* E) l0 ^- G0 D+ S) R2 `\def\BZ {\hbox{\Bbb Z}}) b" e. z C) G; H1 O# g
\def\Gh{\hbox{\htxt\char'150}}
3 S! |2 }' x; h) S1 a' {: `3 o\def\GG{\hbox{\htxt\char'107}}
8 k$ h8 `' P7 s. ^5 T
' H) V5 g/ S. f; } [9 F\def\text#1{\hbox{\,#1\,}}0 i: M7 V( m' K u+ R
\def\pmb#1{\mbox{\boldmath $#1$}}
/ L/ p9 y3 l$ a\def\Cal#1{{\cal #1}} d+ Y4 @$ q9 W- D6 p) F
8 a% d' g$ \( U/ r! F
\newcommand{\orp}{\overline{\BR}_+}
) F e) ?; B+ U: h5 r1 u/ C\newcommand{\opm}{{\rm op}^{\frac{1}{2}-\delta}_M}& w; h8 d0 G$ H5 Z8 o* q% M1 n5 L
\newcommand{\wot}{\widehat{\otimes}_\pi}' ^# d* G! D: M
& P# b" d+ r: z
%-----------------------作者定义
+ j0 w$ h$ `# R2 g- D! J
/ B, s) `4 t) p0 o" U2 J
/ K, ]* a# P/ D$ L2 i%-----------------------作者定义结束
# m5 @; G. W! N. Y j- n6 r7 h _\def\binom#1#2{{#1\choose#2}}
|0 J9 i* d2 m$ l4 O\def\qed{\hfill\raisebox{0.1truecm}{\framebox[0.2truecm]{\ } } }
# a: i$ ]1 r* u ?" R\def\su{\mathop{\sum}\limits}
, S1 H# d, J2 i, y R7 m, H\def\Cal#1{ {\cal #1 \rm} }9 i7 v7 d9 v3 o3 A& L
%---------------------------------------------------------------
* `9 _* g3 \: c- \8 ^\def\evenhead{{\protect\small{\zihao{-5}\songti \hfill \qquad\qquad
/ s7 x% a' q* [9 }2 E2 b5 o\qquad} \hfill {\zihao{-5}\songti }}}1 A" n8 `* l( y: ?7 b! C, D) i+ P
\def\oddhead{{\protect\small {\zihao{-5}\songti }
0 ]% V2 l3 N. G2 X2 k6 |\hfill {\small\zihao{-5}\songti 方奇志: Total Dominating Set Games! u/ Y6 D* C" ]* y" m6 J
}\hfill}}; X) X) F0 L& |, a- f/ a' {7 o
%---------------------------------------------------------------% ]% l! y5 }2 u' A! W/ g: D. W
7 l- M5 t2 R' h! Y& b& x+ [
\vspace*{-13mm}
: n# r* t" A" ^1 H2 y
# m4 t3 L9 _/ z. X\thispagestyle{empty}( w7 A3 `6 P- Q5 G) t
3 N, i' m1 A4 i
& ^. {2 F5 ?3 A/ P( G0 w$ d1 b& ~
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%0 H P( [# g( W: Y
& b7 g) Q, r" `! G+ [ R1 E
" n' y/ e: T9 d! ]; J\ziju{0.025} \vspace*{.26in}
1 ~8 e2 @( i6 }. Y6 |8 F1 m F\begin{center}! Z! O7 s" J& |
{\heiti\zihao{2}\LARGE\bf \huge 序列覆盖映射的注记}%Semi-Fredholm 算子时的应用}3 K# L: X$ M+ m, z% f+ b) n
%\vskip.1in
' f7 C. }8 `+ {; X3 `$ T%{\heiti\zihao{2}{\bf\huge Semi-Fredholm} 算子时的应用}
) [: |( ], f% |3 J% l\end{center}3 W i" g" J- L' @( q
\vskip.12in' G# ]4 J5 _3 q
%-------------------------------------------------------------------------' p# F- n. B* m
%\footnotetext{}& ]6 {0 ^8 i$ v* W( u' \
%\footnotetext{}( u7 _; H" b$ @* m9 ?( b+ \
%\footnotetext{}
B! }, X" g! j- q1 }1 {%\footnotetext{\hfill\thepage\hfill}
* D$ t5 [' {# F: a; b2 G%\footnotetext{}
5 p6 ~+ ?* p9 I* |, w9 W\footnotetext{收稿日期: 2003-07-08.} \footnotetext{基金项目:4 X H9 Z/ d$ a! i! M6 J. z
国家自然科学基金资助课题(No. 10271026),
/ z- V( Y6 z$ C+ A2 L福建省自然科学基金资助项目(No. F0310010) ,
5 s; R, C; V$ U4 H' J5 ?3 Z" |福建省高校科技资助项目(No. K2001110).}
/ M7 n- Q6 ? I+ {2 i) L%数学天元基金(No. TY10126022)及973计划(No. 2002cb312200)资助.}! w Z4 d! ~4 v. i
\footnotetext{E-mail: linshou@public.ndptt.fj.cn} \footnotetext{*2 l5 c3 g/ f& R; C( |
作者现在通信地址.}
0 C' b' G% y5 \8 i' c) H; N0 g& M a
%-------------------------------------------------------------------------: h) z5 y- }$ X% | X
%\centerline{\Rightarrowrge\zihao{4}\songti 蔡俊亮}
- ~8 k: L3 P$ D+ q, a- F%\vskip.1in( J. j) }3 }8 `. j- N
%\centerline{\small\zihao{6} (北京师范大学数学系, 北京, 100875, 中国)}
. O8 `& ]' B: H3 l) G* x%\vskip .1in
' O! F5 v% Z# G; [9 t\centerline{\fangsong\large\zihao{4} 杨 \ \ 凤$^{1,2}$,\quad 钮凯$^{2}$ } \vskip.1in
8 z5 V8 z3 A& J3 |% l+ {\centerline{\small\zihao{-5}(1. 漳州师范学院数学系, 漳州, 福建,
- A, h6 g4 c0 ?) u3 t. s( P v363000;\ \ 2. 宁德师范高等专科学校数学系, 宁德, 福建, 352100)}
Y- C2 o5 X% g' o\vskip.25in {\narrower\fangsong\zihao{-5}\small {\zihao{-5}\heiti& P' R7 F- P1 s0 |
摘要:}\ \
0 a8 \) {, V1 j+ |& p本文的主要结果是构造两个例子分别说明1序列覆盖的商映射未必是弱开映射,1 @0 ?/ R/ @! ~6 F1 o" Y4 `5 U: P
度量空间上的序列覆盖$\pi$映射未 必是1序列覆盖映射./ W+ O1 Q0 R- R8 ?) }; \
6 `6 G7 O6 L3 G" d8 ^; k& \{\zihao{-5}\heiti\tenbf 关键词:}\ \ 序列覆盖映射; 1序列覆盖映射;
+ c# o! G& l) d: O" a2 W弱开映射; $\pi$映射; 商映射$ G+ L& J8 c. R% q
$ e# J# B0 f6 v- m: C4 B. ^2 f
{\tenbf\zihao{-5}\heiti MR(2000) 主题分类:}\ \ 54C10; 54D55; 54E40) X3 i W& `; l5 e
/ {\tenbf\zihao{-5}\heiti 中图分类号:} O189.1: ~1 z! l" W% v' W, @" R3 f' A
1 U9 U) A% J- X/ { %%{\zihao{-5}\heiti 文献标识码:}\ \ A\qquad {\heiti\zihao{-5} 文章编号:}\ \
4 c F! _; _. f6 T& a M5 O%% 1000-0917%(2004)02-0229-07
2 E; x* ]6 J5 [. u1 ?* C0 }5 E9 G6 Q# ], C1 G) c t* c( J; c8 E
}- Z( d, {( O! k; ?# t/ s" C4 v5 W+ Z
# k+ e' p V9 K, `0 _9 @; O
\normalsize* @. y8 W8 ^- W+ ^5 S" r# D/ N
4 V7 B! B2 C1 R9 \* Y* b
\baselineskip 15pt \vskip.15in
: s2 I6 y6 _2 o. w
: N8 s) d- y8 G$ G K0 L x\sec{0 引言}! }* E" F8 M4 Q; |, R
# @/ B- [$ P) Q8 E) j
5 C: S1 m) ?6 n/ Z+ X; D* } {) Q& J
\sec{参考文献} \baselineskip 13pt {\footnotesize
5 w# E7 u# W: S- F
0 _* K/ f. ~( f8 }3 P7 b\REF{[1]} Daves, C, Kahan, W.M., The rotation of eigenvectors by a3 X9 V. b; u9 a. X7 H. o7 x
perturbation, {\it SIAM J Numer Anal.}, 1970, 1(2): 1-46./ T) L! ~$ j1 b c# N9 c
) N* T" T" N, b6 {& _. r1 w) y }
6 r4 A& Z- M6 ?- S6 H7 q2 ]4 _3 {) Y6 d7 b# Z1 a6 M! [1 k6 Q ]) _
\vskip .25in
1 L9 n2 G* J! }+ V9 K2 k- a\begin{center}% I( ]. ~7 ?/ X& K0 [
{\Large\bf Relative Perturbation Bounds for }\\[.1in]+ S4 U/ A5 n3 m* t- d
%vskip .13in
: F" w) o% g: e% }( h+ }4 u" p/ G{\Large\bf the Subunitary Polar Factor }\\[.1in]
5 }! z) ~# L- @2 \2 n* {# j7 d%\vskip .18in
+ l& F; t+ k) f! `9 i+ C{\Large\bf the Under Unitarily Invariant Norms}\\[.18in]
9 j9 }* Y8 _2 [! z# O4 ~* V1 E%\vskip .18in
* Q( v) T2 ^& H6 g+ a/ J4 H- Q{\normalsize\zihao{5} YANG Feng$^{1,2}$, \quad NIU Kai$^2$}\\[.1in]( h9 O0 b$ q2 D$ \
%\vskip .08in
U: \* l" Z& }' X6 `{\footnotesize\it(Department of Mathematics, South China Normal
- V/ b& ^; [& X; xUniversity, Guangzhou, Guangdong, 510631,7 R% n+ p) u0 S% b3 [1 B
P. R. China)}\\[.25in]
1 O# J' a. y/ Z6 J4 G$ `%\vskip .1in4 q6 H8 _( [: c
%{\zihao{5} Liu Yanpei}& [* t8 j- ^" s" C2 }+ P
%\vskip .08in; ~. c, X5 K# Y8 \, m k- s
%{\footnotesize\it(Department of Mathematics, Northern Jiaotong University,
/ U3 Z# I) {4 k/ {%Beijing, 100044, P.~R.~China)}% ~1 E% s6 N9 d2 r) }- w+ r
\end{center}
$ f1 ^9 Z; D( l0 L%\vskip .18in
0 E8 C6 w/ L6 G( A) {/ ]8 u3 X\baselineskip 14pt& j8 O. ~# I: {% \7 Q
5 X9 g1 Y- ]: K\zihao{5}\normalsize {\indent{\bf Abstract:}\ \( P0 d. r( v: Z" M; p& Z) O
# H {# u# ~) l7 E& o# `{\bf Key words:}\ \
$ H% V# g( @9 {* B' p" N2 F9 b; _
7 z0 }% Q; d% _ j# M/ _# ^- s4 j8 r$ O0 H; q# c
}
" d8 Y8 }$ ]$ D$ l& z \\end{document}
8 x2 o* [9 K8 J/ } N4 l |
zan
|