QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 4967|回复: 1
打印 上一主题 下一主题

Springer2013新书 微积分及其应用Calculus With Applications(2nd ed)Peter D. Lax

[复制链接]
字体大小: 正常 放大

115

主题

18

听众

5344

积分

升级  6.88%

  • TA的每日心情
    开心
    2018-2-7 19:09
  • 签到天数: 255 天

    [LV.8]以坛为家I

    国际赛参赛者

    自我介绍
    热爱数学建模

    社区QQ达人 新人进步奖 发帖功臣

    群组2014第三期英语写作

    群组2015年数学中国“建模

    群组2014美赛讨论

    群组科技写作基础培训

    群组2014年美赛冲刺培训

    跳转到指定楼层
    1#
    发表于 2015-4-11 14:30 |只看该作者 |倒序浏览
    |招呼Ta 关注Ta
    微积分及其应用(第2版)Peter D. Lax, Maria Shea Terrell, ''Calculus With Applications, 2nd Edition .pdf
    . R; ~5 m8 I( J7 F( s: `; M2 V# p
    3 b4 a' k# @  M8 R6 S0 [/ c 8 @. R( e: z/ w+ n) t0 l
    【作者介绍】美国纽约大学与康奈尔大学两所著名大学的数学大牛联手为本科生打造的教材(包括复变函数,微分方程,概率论),其中Peter D. Lax 可谓超级数学大牛,得奖无数。7 K& p3 P  G" z$ L6 b% [; @" `

    ( L3 x) w3 ?) |/ g5 R) zEnglish | 2013 | ISBN: 1461479452 | PDF | 516 pages | 6.87 MB( p$ b0 G$ V9 l- _! x. }) B! {

    2 a2 p$ x3 g6 o0 r/ h1 Numbers and Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
    8 Y! t4 s/ z  Z; Q* M1.1 Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 `4 n' `( c! h8 O6 u$ g3 s
    1.1a Rules for Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
    * `0 Y# W; \! O' W. y! n1.1b The Triangle Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Z/ d' i6 j, J
    1.1c The Arithmetic–Geometric Mean Inequality . . . . . . . . . . . . . . 5: m% [5 Z6 M; o$ C9 S% T
    1.2 Numbers and the Least Upper Bound Theorem . . . . . . . . . . . . . . . . . . 11. c# }/ ?. {; p- H6 h
    1.2a Numbers as Infinite Decimals . . . . . . . . . . . . . . . . . . . . . . . . . . 117 H4 M7 {( m8 `# c4 p3 a0 C
    1.2b The Least Upper Bound Theorem . . . . . . . . . . . . . . . . . . . . . . 132 o$ X4 D3 m1 D+ G  {. K" g4 n3 l
    1.2c Rounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
    2 c" o" \6 t4 Q" e8 G$ }1.3 Sequences and Their Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
    4 s; b% g$ w, B1.3a Approximation of
    + m8 ~# Z* w) m* R5 f* |# Y
    2 y$ k3 T) g  w; S) n2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
    - z7 Z; X* D$ g! n7 L1.3b Sequences and Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
    6 O6 ?; k, ^, ]1.3c Nested Intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
    5 C9 m3 L9 B3 r8 L! m9 w2 C6 w% x1.3d Cauchy Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37+ H, m# d3 G' O: E: w7 V6 P
    1.4 The Number e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
    ; p5 u& a5 a9 N' r3 e, T3 k6 w2 Functions and Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51) @: t) Y: j1 L! B' K/ o# c3 G
    2.1 The Notion of a Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
    * g5 E& J) c1 p) I5 Q) e7 a2.1a Bounded Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
    " }8 q% @, }# i& L$ j2.1b Arithmetic of Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 552 u! F3 ?. G8 R) s8 m$ y
    2.2 Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
    4 Z8 r: F* U  g4 |0 e2.2a Continuity at a Point Using Limits . . . . . . . . . . . . . . . . . . . . . . 61. Q: R0 h9 N7 C
    2.2b Continuity on an Interval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
    ( I0 T: W- y8 Z; n2.2c Extreme and Intermediate Value Theorems . . . . . . . . . . . . . . . 66
    : s5 p4 @  g% y# }) x1 |2.3 Composition and Inverses of Functions . . . . . . . . . . . . . . . . . . . . . . . . 710 L3 x% Y7 I+ ?1 {6 d
    2.3a Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 717 y  E% S7 L+ R3 o
    2.3b Inverse Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
    7 ]- B3 V6 h0 L$ H. ~. t. }: Y2.4 Sine and Cosine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
    . a+ k! }& Y9 \* q, @2 o2.5 Exponential Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
    / K! K7 k  j. Z  x! a/ U2.5a Radioactive Decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
    ) I' o3 A+ G/ n, c; G2.5b Bacterial Growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
    " v( g; }* g2 [+ q1 d, @2.5c Algebraic Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
    6 A" z% P/ f) q; S& f) W1 g2.5d Exponential Growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89& [  j: n7 J4 ~1 W' p- a6 e
    2.5e Logarithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91! r# K. [0 q2 H
    2.6 Sequences of Functions and Their Limits . . . . . . . . . . . . . . . . . . . . . . . 965 @0 q' F7 K: z* I" d
    2.6a Sequences of Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
    * A# y0 b; d7 J& E: E$ K: w; S2.6b Series of Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103, p  z+ u! |# W
    2.6c Approximating the Functions
    : `& z+ G$ U" x1 T7 \- O
    0 A) M% |: D9 H$ f5 @2 x, Kx and ex . . . . . . . . . . . . . . . . . 1070 h: ?5 _, o- Q5 z4 e
    3 The Derivative and Differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
    7 }/ A  i: d: _+ l3.1 The Concept of Derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1170 k& H8 d( n9 v* s6 k
    3.1a Graphical Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
    2 z" ~4 d, `& J/ z, }4 I0 a& h, Z$ J3.1b Differentiability and Continuity . . . . . . . . . . . . . . . . . . . . . . . . 123* M: H/ Z$ j, g" A: M0 B$ j
    3.1c Some Uses for the Derivative . . . . . . . . . . . . . . . . . . . . . . . . . . 125% l! ~$ ]) p% S% [6 w% W, ]9 P
    3.2 Differentiation Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
      z5 y  `* t$ u* i3.2a Sums, Products, and Quotients . . . . . . . . . . . . . . . . . . . . . . . . . 133
    $ r* m7 a1 R6 T! D# C2 ], U3.2b Derivative of Compositions of Functions. . . . . . . . . . . . . . . . . 1385 {4 y) w# n  c( K
    3.2c Higher Derivatives and Notation. . . . . . . . . . . . . . . . . . . . . . . . 141
    : z3 l$ ~6 T) V7 @( x% a6 M3.3 Derivative of ex and logx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146* l% z) W0 S/ n5 h
    3.3a Derivative of ex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146( e9 o9 r1 a  H: V
    3.3b Derivative of logx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
    4 ?  ^) [0 u& {. M5 X9 N( \3.3c Power Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1496 _. ^' T) q+ r( I6 X0 b5 h
    3.3d The Differential Equation y = ky . . . . . . . . . . . . . . . . . . . . . . . 150
    6 X2 F8 L6 z6 B( Z5 P3.4 Derivatives of the Trigonometric Functions . . . . . . . . . . . . . . . . . . . . . 1542 Y$ H4 h/ Q/ V: {$ Y( a; t6 b- E
    3.4a Sine and Cosine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154  Y& m5 _: F9 u7 ~
    3.4b The Differential Equation y +y = 0 . . . . . . . . . . . . . . . . . . . . 156' ^* I8 ?0 G0 w5 ^1 y2 y
    3.4c Derivatives of Inverse Trigonometric Functions . . . . . . . . . . . 159
    0 C% Q% S9 l" o- T9 g3.4d The Differential Equation y −y = 0 . . . . . . . . . . . . . . . . . . . . 161
    ; Y9 ]2 F6 y; w9 A0 R3.5 Derivatives of Power Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
    " [: _- B3 {2 S  G5 J4 The Theory of Differentiable Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 171, w: \5 h7 [! P& Y1 @
    4.1 The Mean Value Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
    / W3 {9 j6 w# [* c# J2 ~' M4.1a Using the First Derivative for Optimization . . . . . . . . . . . . . . 174
    # }& t* K" N$ K+ g* k9 J( n4.1b Using Calculus to Prove Inequalities . . . . . . . . . . . . . . . . . . . . 179
    4 p* |' R; H9 A, |- ]8 H+ O! L4.1c A Generalized Mean Value Theorem . . . . . . . . . . . . . . . . . . . . 1810 F$ M; k$ q- v% `& }5 q
    4.2 Higher Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
    " _4 k# X' }$ j2 N5 u4.2a Second Derivative Test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191. t, Z! A9 Q+ y- t
    4.2b Convex Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192. ]$ i! a; p( r* H6 D
    4.3 Taylor’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197* F' u" O! y# A: j' o2 p0 {/ h
    4.3a Examples of Taylor Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
    4 L3 P& l! G  h, K% |* t4.4 Approximating Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
    $ R7 w3 u# {; K. z# |1 b6 l5 Applications of the Derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
    . X; c' W  }6 B: k6 z" P, q4 G5.1 Atmospheric Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
    : V8 |. R" R, H5.2 Laws of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220" h2 _, T2 Q1 l& z, N- v
    5.3 Newton’s Method for Finding the Zeros of a Function . . . . . . . . . . . . 2259 l% ^. J2 w. Z# J8 z
    5.3a Approximation of Square Roots . . . . . . . . . . . . . . . . . . . . . . . . 226
    8 N+ e- V6 |' D& N5.3b Approximation of Roots of Polynomials . . . . . . . . . . . . . . . . . 227
    7 x, S; ^; Z8 y, Q0 C+ x9 x5.3c The Convergence of Newton’s Method . . . . . . . . . . . . . . . . . . 229
    % [% y9 Z% h7 b6 B- u) y0 h5.4 Reflection and Refraction of Light . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
    8 O+ _$ P! C& k0 C5.5 Mathematics and Economics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240& m* v6 Z0 f7 }1 b
    6 Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245) l1 g4 V$ l# B; B
    6.1 Examples of Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245" M0 D. v; z7 w
    6.1a DeterminingMileage from a Speedometer . . . . . . . . . . . . . . . 2451 C% R9 M( x- j* Q% g
    6.1b Mass of a Rod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
    - E, r- `7 h- D. \" n+ p) D5 w+ a6.1c Area Below a Positive Graph . . . . . . . . . . . . . . . . . . . . . . . . . . 249# v6 t; _( v/ |8 j+ L% b) o
    6.1d Negative Functions and Net Amount . . . . . . . . . . . . . . . . . . . . 252
    # j( ~. o: L0 g0 f3 J" u- {6.2 The Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254' d  a2 T4 `& o( T9 z
    6.2a The Approximation of Integrals . . . . . . . . . . . . . . . . . . . . . . . . 257
    8 L! {! M0 v: o$ J# A# }6.2b Existence of the Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
    9 }6 O% s, z+ h3 {' @0 D( l6.2c Further Properties of the Integral . . . . . . . . . . . . . . . . . . . . . . . 265
    3 _$ P# s7 J9 x6 O, I9 L6.3 The Fundamental Theorem of Calculus . . . . . . . . . . . . . . . . . . . . . . . . 2711 ~" F7 a3 k8 t( g8 l
    6.4 Applications of the Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
    % S  G) `" y. \( E6 R6.4a Volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281/ u3 p, ^* v1 `, g1 M& h
    6.4b Accumulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
    7 u' k# S6 W3 I- _6 _4 Q6.4c Arc Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2847 O4 H  V5 F: v# N
    6.4d Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287! t! q% g& r5 w
    7 Methods for Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
    6 o8 O& c1 u; u& ^7.1 Integration by Parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2918 P8 ~$ U8 ~- @* H+ Q( u; `3 R2 w6 |
    7.1a Taylor’s Formula, Integral Form of Remainder . . . . . . . . . . . . 295
    2 c1 h, C. L4 R6 Q) M. r) P: E3 O" ~7.1b Improving Numerical Approximations . . . . . . . . . . . . . . . . . . 297% Q. A9 S( Z" n/ H7 w
    7.1c Application to a Differential Equation . . . . . . . . . . . . . . . . . . . 299
    # \& h" c- {* c% S" p+ Z  `7.1d Wallis Product Formula for π . . . . . . . . . . . . . . . . . . . . . . . . . . 299* \, u) _+ B( p7 \
    7.2 Change of Variables in an Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302& S. ?2 Q  X& x6 N
    7.3 Improper Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3102 r% g& }! P! B9 r' f9 Z$ [7 Z
    7.4 Further Properties of Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326: ^7 F. @* ^$ P2 a8 r$ S1 _
    7.4a Integrating a Sequence of Functions . . . . . . . . . . . . . . . . . . . . 326
    " G' f. v, e6 g) ]/ e  p7.4b Integrals Depending on a Parameter . . . . . . . . . . . . . . . . . . . . . 329
    6 O$ u! Z! Y) I6 m7 t+ \8 Approximation of Integrals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
    6 w8 h! k0 |9 r: Q  b8.1 Approximating Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
    7 S2 e3 j4 Q% j/ s8.1a The Midpoint Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
    7 E. V1 s# k# H8.1b The Trapezoidal Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336
    4 Q) d4 i8 b# u+ ?3 @- \+ V+ J* x) {8.2 Simpson’s Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339! c2 X& p- I2 ]
    8.2a An Alternative to Simpson’s Rule . . . . . . . . . . . . . . . . . . . . . . 343; [) |$ S. E  q2 a" |1 U. l! B
    9 Complex Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347. F6 l& y8 d2 Y2 z# R! P
    9.1 Complex Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
    + e* Z# V5 I; O( B9.1a Arithmetic of Complex Numbers . . . . . . . . . . . . . . . . . . . . . . . 3489 _  r, J; w) w
    9.1b Geometry of Complex Numbers . . . . . . . . . . . . . . . . . . . . . . . . 352( |7 m. P) X: R( f7 w4 L8 t
    9.2 Complex-Valued Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361
    3 z9 D8 B& P" w0 ^. `; m& j9.2a Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362
      m' p* M+ j+ W" \# Q- R9.2b Derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362
    . P0 K7 J% ]/ M" Z; |6 a$ }9.2c Integral of Complex-Valued Functions . . . . . . . . . . . . . . . . . . 3647 L% u. y& R; {0 d5 f* }: x
    9.2d Functions of a Complex Variable . . . . . . . . . . . . . . . . . . . . . . . 365
    + X: t$ m0 f1 |9.2e The Exponential Function of a Complex Variable . . . . . . . . . 3689 Q9 y( @! g5 |* L
    10 Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375
    5 y' o# {) Z, {10.1 Using Calculus to Model Vibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . 375
    - x+ x$ V9 G; K0 t* L, ]10.1a Vibrations of a Mechanical System . . . . . . . . . . . . . . . . . . . . . 375
    ; V: {7 r- Z* _, m7 T10.1b Dissipation and Conservation of Energy . . . . . . . . . . . . . . . . . 379
    5 V  M5 r0 f" k/ E% T* G10.1c VibrationWithout Friction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381# j# n( o$ n; s3 Z7 {9 D
    10.1d Linear Vibrations Without Friction . . . . . . . . . . . . . . . . . . . . . . 3855 k2 a* C( s6 @: n
    10.1e Linear Vibrations with Friction . . . . . . . . . . . . . . . . . . . . . . . . . 3874 K: ]( }) v+ e3 ^' ~
    10.1f Linear Systems Driven by an External Force . . . . . . . . . . . . . 391
    % z9 @0 M- e# N10.2 Population Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398
    / V" f$ s6 S/ ~8 f6 O6 ?10.2a The Differential Equation7 }& [/ k, b* _& @( o
    dN$ V/ X3 t+ D! R7 |
    dt
    . e+ R- x( T  J7 [+ R= R(N) . . . . . . . . . . . . . . . . . . . 399
    & j8 f9 ?8 d1 u/ s0 S3 r10.2b Growth and Fluctuation of Population . . . . . . . . . . . . . . . . . . . 4058 ]  R- J/ P; J( t
    10.2c Two Species . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409
    4 [( |1 H# @: y10.3 Chemical Reactions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420
    " A7 i$ O) }; l) {; H10.4 Numerical Solution of Differential Equations . . . . . . . . . . . . . . . . . . . 428
    ; a' {7 e" Q) D) G11 Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435, ^, e* a0 F! a3 U- U( o
    11.1 Discrete Probability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436
    3 |6 G' z8 c) o9 f11.2 Information Theory: How Interesting Is Interesting? . . . . . . . . . . . . . 4464 N: K' J8 Y- A. ~' T! Q. m+ e7 }
    11.3 Continuous Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452; `' @( k0 o8 Q5 l2 a
    11.4 The Law of Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463
    2 U0 n( a8 ~& V1 k/ PAnswers to Selected Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4757 \. u7 w5 I/ b, p# ]
    Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501* u% j1 Y; L* |, y
    $ \! J( Y! z- B  E* p* \7 t( B" `
    2 X3 i( b- G" y1 [! f$ O
    - A: e: b3 f/ Y8 m0 Y+ M* A

    5 m: h; s( ?, N0 H' Y
    zan
    转播转播0 分享淘帖0 分享分享0 收藏收藏0 支持支持0 反对反对0 微信微信

    115

    主题

    18

    听众

    5344

    积分

    升级  6.88%

  • TA的每日心情
    开心
    2018-2-7 19:09
  • 签到天数: 255 天

    [LV.8]以坛为家I

    国际赛参赛者

    自我介绍
    热爱数学建模

    社区QQ达人 新人进步奖 发帖功臣

    群组2014第三期英语写作

    群组2015年数学中国“建模

    群组2014美赛讨论

    群组科技写作基础培训

    群组2014年美赛冲刺培训

    Calculus With Applications(2nd_ed)-_Lax,_Terrell
    , L3 r) J9 j# L: W1 _* I8 N$ K7 f

    Calculus With Applications(2nd_ed)-_Lax,_Terrell.pdf

    6.87 MB, 下载次数: 10, 下载积分: 体力 -2 点

    售价: 10 点体力  [记录]

    回复

    使用道具 举报

    您需要登录后才可以回帖 登录 | 注册地址

    qq
    收缩
    • 电话咨询

    • 04714969085
    fastpost

    关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

    手机版|Archiver| |繁體中文 手机客户端  

    蒙公网安备 15010502000194号

    Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

    GMT+8, 2025-7-28 00:35 , Processed in 2.902342 second(s), 63 queries .

    回顶部