- 在线时间
- 1 小时
- 最后登录
- 2018-5-2
- 注册时间
- 2006-10-17
- 听众数
- 1
- 收听数
- 0
- 能力
- 0 分
- 体力
- 64 点
- 威望
- 0 点
- 阅读权限
- 20
- 积分
- 20
- 相册
- 0
- 日志
- 0
- 记录
- 0
- 帖子
- 4
- 主题
- 1
- 精华
- 0
- 分享
- 0
- 好友
- 0
升级   15.79% TA的每日心情 | 开心 2018-5-2 00:04 |
---|
签到天数: 1 天 [LV.1]初来乍到
|
本帖最后由 elim 于 2018-5-2 00:44 编辑
. s, f; `" u/ R4 M
3 S4 t4 c9 b# V' m ~4 J+ `6 x从分析的角度看,\(0 < a_{n+1} = \ln(1+a_n) < a_n,\;\{a_n\}\)是正项递减数列, 其极限满足方程\(0\le A=\ln(1+A).\;\therefore\;\lim_{n\to\infty}a_n = 0\)9 m2 l. X0 }! y$ N% v" C8 o( ]7 V
/ R5 W* w d0 S
\(\lim_{n\to\infty} na_n = \lim_{n\to\infty}\frac{n}{a_n^{-1}}\overset{Stolz}{=}\lim_{n\to\infty}\frac{1}{a_{n+1}^{-1}-a_n^{-1}}=\lim_{n\to\infty}\frac{a_na_{n+1}}{a_n-a_{n+1}}=\lim_{x\to 0}\frac{x\ln(1+x)}{x-\ln(1+x)} = 2\)4 I L. i; U H8 a0 [) f
F- a+ F. l, S; ?4 A a\(\lim_{n\to\infty}\frac{n-\frac{2}{a_n}}{\ln n} \overset{Stolz}{=} \lim_{n\to\infty}\frac{1-2(a_{n+1}^{-1}-a_n^{-1})}{\ln(1+\frac{1}{n})}=\lim_{n\to\infty}\frac{a_n/6 + O(a_n^2)}{\ln(1+\frac{1}{n})}=\lim_{n\to\infty}\frac{na_n}{\ln(1+\frac{1}{n})^n}=\frac{1}{3}\)# B0 Q! H t, [" F+ J( u
% E$ S% |3 ~5 Q
\(\lim_{n\to\infty}\frac{n(na_n-2)}{\ln n} = \frac{2}{3}\)# K1 _, i7 i5 o' A/ U
+ X$ \( p' s8 g
好了,现在试试编个程序算算对很大的\(n,\;\frac{n(na_n-2)}{\ln n}\)是否非常接近于 2/3?
" Q; L! `' g& E1 ~! V; I. Y
% N6 Q; l; o7 d1 ]2 A: t2 e8 {7 l4 r* ]
|
|