% ①定义一个HMM并训练这个HMM。# B# \: M+ x9 g8 T
% ②用一组观察值测试这个HMM,计算该组观察值域HMM的匹配度。
, ?9 t$ w R, y5 V( ]% 修改:旺齐齐
$ _& e( z/ Z" A% P4 R3 W% 修改部分为:添加 HMM2 模型。测试一个观察序列更加符合哪个哪个HMM模型。 G4 {9 A& |. f3 O) `3 A9 ?
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % O:观察状态数# w) `; Z/ C- @, f+ b
O = 7;
6 s2 ~ ^0 I5 l5 ]6 a! T. PO2 = 7;
4 `1 W7 H: q, \1 {5 I& K* Q% Q:HMM状态数
. h f- W- B, k. b4 WQ = 5;
, D7 z1 J& h9 Z" o! QQ2 = 5;
+ O) b, n3 w" a/ K3 Q) w0 U6 O" F%训练的数据集,每一行数据就是一组训练的观察值
7 d1 Q5 ^0 X2 V; U! _# c- P) pdata=[1,2,3,1,2,2,4,2,3,1,2,7,2;
7 J* Z! a3 f7 m" ^ {# {& P) G7 Y7 W% e 1,2,3,6,2,2,1,4,3,1,5,3,1;
% a& V9 P, z+ A# R5 P2 L7 R! E 1,2,3,1,2,5,1,2,4,1,2,3,2;
2 C- p. @3 e# p; ]/ { 1,2,7,1,2,2,1,2,5,1,2,4,1;$ g+ w/ M/ D) R7 Z& i
5,2,3,3,5,2,1,2,3,1,2,3,6;
' M2 R% [2 e- ~% p& f1 ?/ v) H 1,2,3,1,2,2,1,6,5,1,2,6,4;+ {& Q. y4 o4 X* b, Q
5,2,3,4,4,2,1,2,3,1,2,5,6;
7 r- t. |4 u' r& f' K& a 1,2,6,1,2,2,1,2,3,1,4,3,2;
& ~( U! l$ D7 o( d2 d0 J 1,2,3,4,2,7,1,4,3,1,7,3,3;2 R1 B% E) ]/ G) A; S! W; h& n
5,2,3,5,2,2,1,2,3,1,2,3,4;
/ f' N* u# B) z" l/ `& Q. g5 h 5,2,4,1,2,2,5,2,3,7,1,6,2;] ! |4 J0 P& A* [+ y% c, \
data2 = [1,2,3,1,2,2,4,2,3,1,2,7,2;
2 }9 ]4 D1 _. u7 M0 i( ?& b 1,2,3,6,2,2,1,4,3,1,5,3,1;
" l2 A% [9 o6 ?# e* ` 1,2,3,1,2,5,1,2,4,1,2,3,2;) w3 J) h2 T2 L
1,2,7,1,2,2,1,2,5,1,2,4,1;
u' h& T8 ?, o2 k 5,2,3,3,5,2,1,2,3,1,2,3,6;. f W/ d3 L# H% w: L- U L+ k7 \
1,2,3,1,2,2,1,6,5,1,2,6,4;
0 ^ y' l# @- C 5,2,3,4,4,2,1,2,3,1,2,5,6;
+ c( _9 m2 g' k1 Q8 r2 ^ 1,2,6,1,2,2,1,2,3,1,4,3,2;, @, y/ K8 @ K; U
1,2,3,4,2,7,1,4,3,1,7,3,3;
+ [- I5 s. |' d/ o 5,2,3,5,2,2,1,2,3,1,2,3,4;) |9 @3 m' ?3 r1 _
4,2,5,1,2,2,6,2,3,7,1,6,4;] % initial guess of parameters
4 S3 e9 o4 C: B- e0 u5 ?( S% 初始化参数& e: W# u! X- h% F7 n! n) X
prior1 = normalise(rand(Q,1));( `- h- d) r5 w( {
transmat1 = mk_stochastic(rand(Q,Q));
2 }, q q. I' U1 ~$ dobsmat1 = mk_stochastic(rand(Q,O)); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%( U8 C3 J# V$ R
% 添加部分
- L. T( i* T9 |# Q3 B4 Z prior3 = normalise(rand(Q2,1));' a1 |- Z, x7 [: z" k) ^0 p
transmat3 = mk_stochastic(rand(Q2,Q2));
' ^" Q- p* R& [: x: I: b& n( g1 t obsmat3 = mk_stochastic(rand(Q2,O2));& L- W+ l# u# [
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % improve guess of parameters using EM
+ v- D0 y" y; }) s+ U: ^1 E% 用data数据集训练参数矩阵形成新的HMM模型
! s& M2 O" g r# S1 H+ D! G. A[LL, prior2, transmat2, obsmat2] = dhmm_em(data, prior1, transmat1, obsmat1, 'max_iter', size(data,1));
7 [( Q! R+ z0 ~0 H3 d: _% 训练后那行观察值与HMM匹配度9 a) W2 H; V% h# e0 ]/ g" C
LL, S# E: O; {( y
% 训练后的初始概率分布- F- d. O5 Z+ g: a3 I N4 z
prior2" q/ h2 m( ~ A, r
% 训练后的状态转移概率矩阵
) Q% `" s2 [! Atransmat2
. h1 g+ Q# {: d% 观察值概率矩阵( P" N q3 w! p, k" D* x- T
obsmat2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%$ u8 C0 D2 i% B) C# v3 L, w. G; r
% 添加部分
' }' x& K. T$ A7 t. t [LL2, prior4, transmat4, obsmat4] = dhmm_em(data2, prior3, transmat3, obsmat3, 'max_iter', size(data2,1));
& k9 I" c9 O5 R5 w5 C) y( o6 p LL2
) e8 U- ~7 V- b5 s9 A5 G prior46 F5 q# F9 j$ a) d8 i+ E
transmat4
$ U* I3 {9 T8 C8 \* b# T2 ` obsmat4' c- ]5 M7 z+ e% G& s1 h$ h
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % use model to compute log likelihood
: G% i0 O* ]7 G7 ^% data1=[1,2,3,1,2,2,1,2,3,1,2,3,1]/ F1 u ~ D; p8 o" W5 y
data1 = [5,2,4,1,2,2,5,2,3,7,1,6,2]
. e- M/ R4 @$ u% u+ K- k' f: Wloglik = dhmm_logprob(data1, prior2, transmat2, obsmat2)
& j! f1 o2 F2 r% log lik is slightly different than LL(end), since it is computed after the final M step- r' P6 B' M% f2 s% I# d& J
% loglik 代表着data和这个hmm(三参数为prior2, transmat2, obsmat2)的匹配值,越大说明越匹配,0为极大值。 % path为viterbi算法的结果,即最大概率path %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
! i- S. ?) ]8 J/ w! h9 d& J5 U% 添加部分" Q- a" C8 v/ b5 l7 v: P/ E/ |
loglik2 = dhmm_logprob(data1, prior4, transmat4, obsmat4)
! [ R& ~1 p& r: e8 ~& G- b0 h%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% $ B* j$ D+ {2 _; S
B = multinomial_prob(data1,obsmat2);
; h7 F) ?, v, h! Q7 mpath = viterbi_path(prior2, transmat2, B)
( \" U! V- e) F4 i9 J3 rsave('sa.mat'); $ M. {+ ^1 G* G/ l$ |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Z5 K6 H( _& b+ @. P/ P* c7 Y
% 添加部分
5 u; r1 P: S1 B9 E; ]' \ B2 = multinomial_prob(data1,obsmat4); K, y- m% f1 }0 |: f
path2 = viterbi_path(prior4, transmat4, B2); O! ~0 T8 P/ F0 p% G; ?
save('sa2.mat');
8 Z5 ~1 U5 E1 D1 L0 y if loglik2 > loglik + @3 R& a- O; M! ~+ I
fuhe = 2# k" t; O9 X: m4 C. R3 e
else2 f0 O/ a) |3 N$ N% U( e/ Z
fuhe = 1% F! {# b3 R3 @* f3 W" O4 E0 v
end
. O! ~ p4 ~1 \% g# n V7 X%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ------ 运行结果 ------ data = 1 2 3 1 2 2 4 2 3 1 2 7 2. a: p4 S& ^2 H1 [$ W' {- i
1 2 3 6 2 2 1 4 3 1 5 3 13 _' Y( G0 C" ?
1 2 3 1 2 5 1 2 4 1 2 3 24 g# x8 F5 y/ [& t1 I- [8 Y: d
1 2 7 1 2 2 1 2 5 1 2 4 1& P9 _! N" y* ^' N9 K
5 2 3 3 5 2 1 2 3 1 2 3 6! E, c2 j3 u! J3 e# F5 f) V, \$ Z- H
1 2 3 1 2 2 1 6 5 1 2 6 4& n. p: `3 v w: J
5 2 3 4 4 2 1 2 3 1 2 5 6
0 ?: x& \$ Q( Q/ M8 E 1 2 6 1 2 2 1 2 3 1 4 3 2( G" Q% h" }# ]1 s/ b2 Z, J
1 2 3 4 2 7 1 4 3 1 7 3 3
7 ]9 e+ R" P! u 5 2 3 5 2 2 1 2 3 1 2 3 48 X6 l6 ?9 Z R2 q, Q
5 2 4 1 2 2 5 2 3 7 1 6 2
/ d$ u7 x( s3 B# r% Vdata2 =
1 2 3 1 2 2 4 2 3 1 2 7 2
/ ^5 |5 h2 u) N+ a; P7 m8 ^; @ 1 2 3 6 2 2 1 4 3 1 5 3 1' j$ Z8 c) b0 j" C o: U( y b1 _
1 2 3 1 2 5 1 2 4 1 2 3 2
- E' n$ }8 z4 _/ c; ?4 ?2 Q2 y 1 2 7 1 2 2 1 2 5 1 2 4 1
P% I( p2 C* [" H3 ^( S 5 2 3 3 5 2 1 2 3 1 2 3 6% m5 u, f( @ S
1 2 3 1 2 2 1 6 5 1 2 6 4
# F- R/ C9 R- x K$ }: m8 p 5 2 3 4 4 2 1 2 3 1 2 5 6; M0 k; D' Q5 s r2 b
1 2 6 1 2 2 1 2 3 1 4 3 2( J7 G2 K# P5 b7 k
1 2 3 4 2 7 1 4 3 1 7 3 3
' |, C- t2 g& X$ }9 M, H1 R( a( U 5 2 3 5 2 2 1 2 3 1 2 3 4
2 W+ I, E2 Q1 s2 e& H1 ]& I 4 2 5 1 2 2 6 2 3 7 1 6 4 iteration 1, loglik = -327.100465
( N7 a! K+ ^4 n. _7 Qiteration 2, loglik = -238.2598125 T1 R% o, u1 {$ Q/ e' T' i; S
iteration 3, loglik = -232.962948
+ I8 } H9 u7 U/ }7 `& y) yiteration 4, loglik = -223.323891
& {3 ~$ C) i: O4 Jiteration 5, loglik = -207.6308757 y. e2 V: T4 Y: u6 p
iteration 6, loglik = -191.012697
- m3 O4 r+ p! P8 }+ F- [7 fiteration 7, loglik = -178.611546/ E& U6 s$ K4 Z7 v, c
iteration 8, loglik = -171.524132' a, }) i1 X: B2 V% F8 R) _- W
iteration 9, loglik = -168.626526; k9 v+ [/ u, X9 k3 `
iteration 10, loglik = -167.3870572 R3 l1 ]. f3 A
iteration 11, loglik = -166.689175 LL = Columns 1 through 9 -327.1005 -238.2598 -232.9629 -223.3239 -207.6309 -191.0127 -178.6115 -171.5241 -168.6265 Columns 10 through 11 -167.3871 -166.6892
) F- [; c; u1 p" Gprior2 =
0.00005 C- U% Z4 M; F W" B8 W
0.0000
& i" J5 _3 t% _ 1.00007 `* d2 L/ s$ {- S5 O
0.0000
" }: v E; D$ w# F) I- s/ o 0.0000
" {5 e$ M% v. n' [$ r" g3 c0 Atransmat2 =
0.0138 0.0089 0.7680 0.1060 0.1033( L1 f1 p9 B5 J2 u/ J' q
0.7811 0.0000 0.0199 0.0067 0.1923
6 V/ g1 d1 u" e7 J' @2 E 0.0000 0.9936 0.0000 0.0064 0.0000
5 Y$ A5 a) B3 b8 f3 Q! y5 } 0.1686 0.2604 0.2242 0.3398 0.0070
0 n, n# l: v. D9 M, O2 L 0.0053 0.0406 0.8350 0.1184 0.0007 / w5 q7 B, ~: N8 ]% T
obsmat2 = 0.0000 0.2351 0.5738 0.0256 0.1118 0.0186 0.0351
, r5 S0 `7 i6 }3 Z1 I ?+ G 0.0000 0.8270 0.0000 0.0790 0.0256 0.0456 0.0228
' w$ _9 g6 e6 c 0.7514 0.0021 0.0011 0.0550 0.1472 0.0432 0.0000/ f% o4 A, p( N+ Y
0.0014 0.4208 0.0447 0.4366 0.0023 0.0887 0.00553 z% G! Q6 p5 W
0.0000 0.0784 0.3223 0.2014 0.0116 0.1525 0.2338 iteration 1, loglik = -277.738670' Z8 ~$ p* k0 N: d2 q
iteration 2, loglik = -242.163247
: I0 t6 O1 z# I9 K4 b4 oiteration 3, loglik = -238.321971
; ?' `2 p5 s+ R8 h5 yiteration 4, loglik = -233.166746
9 Y2 j5 u2 V$ O: K5 titeration 5, loglik = -225.682259$ U) t$ G9 |0 h
iteration 6, loglik = -214.5602963 ]' d+ H0 z) q4 Z5 n5 s# o; u
iteration 7, loglik = -201.182015
3 E. C: Y& h8 J2 ^* Giteration 8, loglik = -189.427453
3 m4 L0 X! w! ^7 M& b* ]iteration 9, loglik = -179.1563525 U% F& Q/ ~7 ]7 ? N6 j
iteration 10, loglik = -171.744096
* h9 o& t2 Z! h" W( H# K3 `8 Viteration 11, loglik = -168.409063 LL2 = Columns 1 through 9 -277.7387 -242.1632 -238.3220 -233.1667 -225.6823 -214.5603 -201.1820 -189.4275 -179.1564 Columns 10 through 11 -171.7441 -168.4091 6 F5 W ]0 }& }4 ?8 g
prior4 = 0.0000
" O# Y8 x: f7 U \ H4 v 0.99820 N5 Z; p# ~0 e$ v& O, D0 H
0.0004) t# ^3 q7 ~6 |
0.0014
7 v4 B8 l. ?. G/ ^. O8 {% ] O 0.0000
$ a, a! h0 j- t5 J8 W; Y4 _transmat4 =
0.0873 0.5277 0.2799 0.1007 0.00457 ?* |: Q& s" a, `% C( l) t
0.0002 0.0000 0.0005 0.0000 0.9994
+ Z6 Z$ H/ u) B M8 r$ G 0.0180 0.0000 0.0118 0.0011 0.9692& M" @' ~) L y: @: u" ]+ }# P" ^6 ?
0.0436 0.0226 0.0810 0.0219 0.8310$ J6 @+ P+ y5 t3 r8 w/ A) Y
0.9746 0.0056 0.0003 0.0195 0.0000
0 W6 O4 \ i* w; f, @" G( yobsmat4 =
0.0000 0.2012 0.5080 0.0580 0.1093 0.0465 0.07703 M+ N! S }- q, e7 t% c
0.7939 0.0001 0.0000 0.0745 0.1277 0.0038 0.0000% r% M# k% z+ J7 f- P
0.4120 0.1044 0.0049 0.1736 0.0032 0.3017 0.0001
% A0 c. P( ?7 T 0.4527 0.0622 0.0637 0.2568 0.0549 0.0295 0.0802* a$ ^$ }7 z1 H) j: k
0.0000 0.8172 0.0000 0.0943 0.0270 0.0389 0.0225
7 X0 Q% I3 H3 s; l6 w- odata1 =
5 2 4 1 2 2 5 2 3 7 1 6 2
) Z3 C4 S# v* B( l, _+ a+ r1 Zloglik =
-19.2351
; p: K( M" u0 o4 Gloglik2 =
-21.0715
$ {$ ~5 t% U% ~" m3 D; rpath =
3 2 5 3 2 1 3 2 1 5 3 2 1
7 X. H# J) U$ h. O9 ~! lpath2 =
2 5 1 2 5 1 2 5 1 1 2 5 1
0 p# p) l! J7 ^% A7 X% S! f- z: u0 k8 ^fuhe =
1 |