: q/ ^, F& \% k+ N* [# p& {1 d9 |4、Python代码! H- t2 q* o5 ^0 |
#-*- coding:utf-8 -*- 0 Q- W5 T ~8 w ) ]; m9 n% h! d8 G5 o" A# R& G" limport random - k, G$ y9 M4 gimport math# v- G: R _/ S5 H$ h, J z
from operator import itemgetter( p, C( `5 g) a6 f1 }
6 a A2 x# {1 j$ ^: b
class Gene:) N% I# g* r% Z4 ]6 k# R
''' : l+ Z& B. d" e/ v This is a class to represent individual(Gene) in GA algorithom1 K7 N( f3 n* e/ _) f' ]! e
each object of this class have two attribute: data, size % D) u, W K1 k- _6 i% o '''% b+ t; ~& N2 |% w0 ^
def __init__(self,**data): ' I% t, j. `! x4 ` L7 L8 S& H, V self.__dict__.update(data) $ Q8 B) m% `% ?! C- E self.size = len(data['data'])#length of gene . w8 B3 V' {) Q % B- [' z' e8 q8 N7 \/ C* V5 U5 n : z9 b O. ~% C u# aclass GA:3 o+ x9 }5 C" x# k
'''- |' b. @5 k7 X3 y$ {6 y
This is a class of GA algorithm. ( v/ Z8 g" ]$ S0 c '''6 z+ D6 d4 F2 f* l% Q4 ]
def __init__(self,parameter): 8 `. {) ^% T' H; ^3 v ''' * t3 ~+ G" V- p: V2 m- u. U Initialize the pop of GA algorithom and evaluate the pop by computing its' fitness value . " h4 _, G, z3 S) ~ The data structure of pop is composed of several individuals which has the form like that:8 j) _# w( I) E/ p$ P% e
9 u" I5 N. j; g7 W' y {'Gene':a object of class Gene, 'fitness': 1.02(for example)} ! n7 E2 `; Q) H; U) ?$ ? Representation of Gene is a list: [b s0 u0 sita0 s1 u1 sita1 s2 u2 sita2] & ~1 k7 x+ A/ g/ e$ s$ V8 [9 Y/ o8 }% A! B$ S9 a- i
'''! j7 R( ]' q. e' w/ c; v
#parameter = [CXPB, MUTPB, NGEN, popsize, low, up] - T0 @3 E; _: A self.parameter = parameter 4 w2 e1 k0 p( X: ?& ]3 } ; r- g, ^- w$ H low = self.parameter[4] ; _6 f! K4 C2 G5 i+ r# j9 l+ B+ y5 o up = self.parameter[5]" v- I" `- V2 |& |8 Y9 Q
% i8 w6 x0 P( n$ w5 h" T3 z self.bound = []0 V' S6 y8 B. M2 ?0 ?4 u; y1 l
self.bound.append(low)3 a ] ?: i# d! b* C& X7 D
self.bound.append(up)1 r1 t& o0 H% a5 k1 f! Q
- C1 d1 S! p: t pop = [] ' L2 c z& ~; }. E; x* _( ] for i in range(self.parameter[3]):* J! _/ w% r. c6 s; r/ ?
geneinfo = []1 p& @' v2 ~/ \. K. |
for pos in range(len(low)):7 Q+ Q3 R# h1 ^3 w& b( `
geneinfo.append(random.uniform(self.bound[0][pos], self.bound[1][pos]))#initialise popluation; n0 X8 x6 d0 D! X
( _# x- I- j! G1 o fitness = evaluate(geneinfo)#evaluate each chromosome 1 a; B g) K/ Z9 m* \* D. E pop.append({'Gene':Gene(data = geneinfo), 'fitness':fitness})#store the chromosome and its fitness- p T/ v6 F5 ?: i
% j+ a+ N% c4 V0 {2 {9 O) m U
self.pop = pop 2 Z/ s3 j+ L- u: j/ w0 r self.bestindividual = self.selectBest(self.pop)#store the best chromosome in the population & K% i+ N1 }1 r* j9 J 1 G5 C! g! |! m def selectBest(self, pop): + U! ]& r" ?/ T '''3 w1 {* S0 T p+ |
select the best individual from pop 0 Q# c' i9 m3 V; Q' P8 p- p' y ''' - e1 B5 ` X" e! x4 h" F s_inds = sorted(pop, key = itemgetter("fitness"), reverse = False)3 e% F6 i, f* l2 W
return s_inds[0] 2 A# s% `1 |+ K2 d: G9 c8 v& z2 x8 _3 Y
def selection(self, individuals, k):6 @& b& {' C( t8 R4 B3 |0 A
''', v" C7 E! @- h, j% c T+ T. r
select two individuals from pop0 ~$ i- [' ~) ?" O' [1 ^( u$ u& ^
'''! ?+ c7 ~1 t6 N9 b- E, n
s_inds = sorted(individuals, key = itemgetter("fitness"), reverse=True)#sort the pop by the reference of 1/fitness * g& X3 ]: F( d% P/ n1 c
sum_fits = sum(1/ind['fitness'] for ind in individuals) #sum up the 1/fitness of the whole pop0 i8 b& W. O+ D
" D1 G1 k1 [* K1 J$ h/ M% b& @9 u$ ^ chosen = [] 2 u) m! W+ j) o1 [% X( J4 g for i in xrange(k):/ T3 _6 S. `+ Y6 g& h4 U; r
u = random.random() * sum_fits#randomly produce a num in the range of [0, sum_fits] 1 t8 O6 [0 W3 h# L4 b L sum_ = 03 J0 N* A4 c- o6 w/ e
for ind in s_inds:) g' e2 n0 ~) n; W
sum_ += 1/ind['fitness']#sum up the 1/fitness' X" a8 a& b( @; D: D w
if sum_ > u:2 g( F8 C U4 {9 |" N; y! o
#when the sum of 1/fitness is bigger than u, choose the one, which means u is in the range of [sum(1,2,...,n-1),sum(1,2,...,n)] and is time to choose the one ,namely n-th individual in the pop9 _' @4 ~0 { f5 [( {$ f7 Z
chosen.append(ind) C5 Q8 \9 V6 I, Y" E) {* F break ! E9 E7 S% _" \6 R/ f5 | + T- _! B/ x& S6 U3 m/ i9 V6 X g return chosen # R1 {# |" m/ ^+ o$ z
7 t% A: t! F* m2 C! |0 Y b
7 v! P! T0 {* W' k1 z5 P- l' k
def crossoperate(self, offspring):+ ]6 B" I9 O0 p2 b
''' @5 x3 Q& \7 f( S, ]% w# c; F! ?
cross operation 9 X& [* Q+ y, D% \9 G$ w# R( N ''' q$ n$ @' r; g& P, h
dim = len(offspring[0]['Gene'].data) # i* _4 O# ]* v5 P! p) b % r# ]/ d( u( ]& e \ geninfo1 = offspring[0]['Gene'].data#Gene's data of first offspring chosen from the selected pop ( i1 z- e! U( V5 k q geninfo2 = offspring[1]['Gene'].data#Gene's data of second offspring chosen from the selected pop2 N: y6 d$ c4 I6 f4 T
. V' ^' Q2 o% s @+ Y! q0 }2 c- l+ M
pos1 = random.randrange(1,dim)#select a position in the range from 0 to dim-1, 1 p6 @* A E% V( U Q- S# Z
pos2 = random.randrange(1,dim)$ L, c0 k$ i, r+ k6 j0 j+ A2 h
- p+ ]' c7 B6 M; F6 Z$ ~
newoff = Gene(data = [])#offspring produced by cross operation7 @( P' R( [' M; @. G' E; k& {
temp = []; e; ^4 g3 T5 \2 p& T! B* ~
for i in range(dim):; `2 j3 A4 w' G5 [# z3 p
if (i >= min(pos1,pos2) and i <= max(pos1,pos2)): , n& B. j0 }4 N8 r# R( k4 X: O temp.append(geninfo2) % f/ y4 t9 }" W t #the gene data of offspring produced by cross operation is from the second offspring in the range [min(pos1,pos2),max(pos1,pos2)]; q r/ k. f8 w9 W5 \( Q
else:8 J* r# D. R8 g: d2 x
temp.append(geninfo1) % u6 y/ x' A* p1 l/ g #the gene data of offspring produced by cross operation is from the frist offspring in the range [min(pos1,pos2),max(pos1,pos2)] 5 T$ X5 j1 z; y newoff.data = temp5 N* r G8 B4 l6 _/ P
3 Z, j; z% o1 r) H8 w
return newoff, _$ l- Q$ F5 L
' s* O: X2 h, q# ~/ d* L( F" N3 @4 z- I" g s( V6 r; d7 G, T
def mutation(self, crossoff, bound):6 w( n* d9 A( q7 G. u T, }0 p! O3 E# Z
''' ( \% d' }$ `+ E$ r# ]* J; N& K* w mutation operation 2 u* O! z6 Z i% X ''' % c- y' g7 g* X- ~) n' Z" a 5 q+ r1 J; g# x8 H) J. C" z dim = len(crossoff.data)- Q" U. h8 ^' p7 v. N. `# p
) {7 |+ N$ B! _7 S0 R2 x8 A' s9 b# p0 j pos = random.randrange(1,dim)#chose a position in crossoff to perform mutation.$ D4 h+ N2 x* X$ b" Z& s; Q5 k
, i" ]" Z2 I3 l6 G* t9 k
crossoff.data[pos] = random.uniform(bound[0][pos],bound[1][pos]) 5 G7 S: b% i3 J: Q5 H. G return crossoff/ _& Z3 W) ^; o9 q3 t$ k" m; C0 k
- V& f# @5 e0 f
def GA_main(self): " E, T8 I* J- ?) B5 O2 e5 R' u ''' 2 R; Q d* c4 ] main frame work of GA) z4 |9 X3 T4 F- Z6 b. V
''' * R8 x" l1 S" U- a/ w" M 7 Y! Z+ S5 x' U/ @: y, I6 c popsize = self.parameter[3]+ Z' {+ q4 f! q& O5 x. s
; A$ Y( T- ~; k: ?
print("Start of evolution") # L, R2 R9 G! g$ m4 d' _" j+ v3 k* Z
# Begin the evolution g- p* [' [5 L for g in range(NGEN): D8 q M# l2 R6 b1 I) o
" j, p$ @8 R% Q4 R9 M
print("-- Generation %i --" % g) 0 D& V0 N8 l. D% f W6 ]) [& W$ d
2 X# J/ m; {; [4 G: x0 X #Apply selection based on their converted fitness5 ?0 {) ?1 J" _2 @6 g
selectpop = self.selection(self.pop, popsize) 3 Z' z5 ?0 a* y& K/ X0 E3 ~6 k) F1 e- m! ]$ C: i
nextoff = [] 6 f* ^1 [2 i0 \( Y
while len(nextoff) != popsize: ) I3 Q; E3 ~# h, @* X3 H. q # Apply crossover and mutation on the offspring ) S9 d. t& t! H$ f6 v6 B8 g , ^: f: N2 v, X# E+ R& ^4 l # Select two individuals6 f5 O4 m$ N+ p+ T j D
offspring = [random.choice(selectpop) for i in xrange(2)] 1 t% N4 P/ W% a M# _' t, C% C 1 f) I3 q! w+ @/ C" J) p if random.random() < CXPB: # cross two individuals with probability CXPB 7 B- j8 O% y P crossoff = self.crossoperate(offspring) ! [! Y% w1 n+ W" Y5 R fit_crossoff = evaluate(self.xydata, crossoff.data)# Evaluate the individuals 3 a: X. |8 T' u& C
6 f" v" {1 X# D0 \: D8 O; ` u if random.random() < MUTPB: # mutate an individual with probability MUTPB1 r- K. y( d% f) C- t
muteoff = self.mutation(crossoff,self.bound)# S. c, M/ \5 d9 V
fit_muteoff = evaluate(self.xydata, muteoff.data)# Evaluate the individuals - x; X) e, M: B+ t. H/ G nextoff.append({'Gene':muteoff,'fitness':fit_muteoff})( [9 R! S- `5 B+ ]
' k1 m; v G7 Y& `6 \7 R # The population is entirely replaced by the offspring 9 J: U, b+ z5 d5 Y+ Y9 a& C6 f, b self.pop = nextoff R8 X0 {& k# X0 [, U' H/ j& ^. }. P+ o) e8 `8 l/ `$ Z
# Gather all the fitnesses in one list and print the stats5 E+ L3 L" `( c) u
fits = [ind['fitness'] for ind in self.pop]4 v& W9 V/ z/ t! B
: K/ G: n5 _3 |# U0 r: K- u- F) L
length = len(self.pop)8 f2 E7 H0 S4 w) v$ ?- O+ |
mean = sum(fits) / length/ Z9 d- E W6 q8 ^6 k
sum2 = sum(x*x for x in fits) 7 n9 C5 V% t i. M+ X- @ std = abs(sum2 / length - mean**2)**0.56 a% E5 Z7 d h. o) B8 m5 B" Q
best_ind = self.selectBest(self.pop)6 O" V) z7 p' o ?
. Q# X5 d- h! @4 Y% d
if best_ind['fitness'] < self.bestindividual['fitness']: 8 T. w W' j' _. T- K& b. E self.bestindividual = best_ind : M& u3 H/ Q3 Q3 Z: s9 E( W( B, a' k
print("Best individual found is %s, %s" % (self.bestindividual['Gene'].data,self.bestindividual['fitness']))" i& y' k1 l; b, f7 N2 P
print(" Min fitness of current pop: %s" % min(fits)) 0 v6 q; K/ J7 ]' z3 u0 A3 T" A$ O0 q print(" Max fitness of current pop: %s" % max(fits)) ! Z, M: r9 T0 }( H! d print(" Avg fitness of current pop: %s" % mean)/ S% p, X( q0 n9 l
print(" Std of currrent pop: %s" % std) / N P- \7 t- K2 V' a : o" j8 R. F) t! P% V) C print("-- End of (successful) evolution --") % s. H$ {, ~7 U/ T) Q8 @ & N* o( B; E, V& t5 Nif __name__ == "__main__": 8 ?* n5 G4 c$ @- v+ f _2 d2 J7 ]. m7 I: ?! w! H CXPB, MUTPB, NGEN, popsize = 0.8, 0.3, 50, 100#control parameters$ y8 h, M' G( D' y* @/ M8 K7 ~
( |+ G* r! G( l% U9 x4 M
up = [64, 64, 64, 64, 64, 64, 64, 64, 64, 64]#upper range for variables 3 g) y; C: u- m. x& g low = [-64, -64, -64, -64, -64, -64, -64, -64, -64, -64]#lower range for variables# W! H5 @) _7 m' F6 V& j/ b) h
parameter = [CXPB, MUTPB, NGEN, popsize, low, up] 0 k# j9 F' v4 D7 R7 g * s* S, |2 j, T# |+ B/ }0 F run = GA(parameter) % r' r3 ?! ~/ T" U3 @ run.GA_main()4 O9 q2 o# t$ T
———————————————— S; J7 ?( Y& i版权声明:本文为CSDN博主「bible_reader」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。 ; z: H) U/ r. P5 v5 [原文链接:https://blog.csdn.net/bible_reader/article/details/72782675 5 S/ |) E0 h, R# z3 V! w+ B; i 7 A: {! ^0 y4 }% D8 \; [" @ ' y6 {" p. @* y, _& n# H