|
一个复杂的工程通常可以分解成一组小任务的集合,完成这些小任务意味着整个工程的完成。例如,汽车装配工程可分解为以下任务:将底盘放上装配线,装轴,将座位装在底盘上,上漆,装刹车,装门等等。任务之间具有先后关系,例如在装轴之前必须先将底板放上装配线。任务的先后顺序可用有向图表示——称为顶点活动( Activity On Vertex, AOV)网络。有向图的顶点代表任务,有向边(i, j) 表示先后关系:任务j 开始前任务i 必须完成。图1 - 4显示了六个任务的工程,边( 1 , 4)表示任务1在任务4开始前完成,同样边( 4 , 6)表示任务4在任务6开始前完成,边(1 , 4)与(4 , 6)合起来可知任务1在任务6开始前完成,即前后关系是传递的。由此可知,边(1 , 4)是多余的,因为边(1 , 3)和(3 , 4)已暗示了这种关系。 2 r! c$ E6 U; E; ?" J) l6 s
在很多条件下,任务的执行是连续进行的,例如汽车装配问题或平时购买的标有“需要装配”的消费品(自行车、小孩的秋千装置,割草机等等)。我们可根据所建议的顺序来装配。在由任务建立的有向图中,边( i, j)表示在装配序列中任务i 在任务j 的前面,具有这种性质的序列称为拓扑序列(topological orders或topological sequences)。根据任务的有向图建立拓扑序列的过程称为拓扑排序(topological sorting)。图1 - 4的任务有向图有多种拓扑序列,其中的三种为1 2 3 4 5 6,1 3 2 4 5 6和2 1 5 3 4 6,序列1 4 2 3 5 6就不是拓扑序列,因为在这个序列中任务4在3的前面,而任务有向图中的边为( 3 , 4),这种序列与边( 3 , 4)及其他边所指示的序列相矛盾。可用贪婪算法来建立拓扑序列。算法按从左到右的步骤构造拓扑序列,每一步在排好的序列中加入一个顶点。利用如下贪婪准则来选择顶点:从剩下的顶点中,选择顶点w,使得w 不存在这样的入边( v,w),其中顶点v 不在已排好的序列结构中出现。注意到如果加入的顶点w违背了这个准则(即有向图中存在边( v,w)且v 不在已构造的序列中),则无法完成拓扑排序,因为顶点v 必须跟随在顶点w 之后。贪婪算法的伪代码如图1 3 - 5所示。while 循环的每次迭代代表贪婪算法的一个步骤。
/ x: C6 w" b( Q2 q) R1 C现在用贪婪算法来求解图1 - 4的有向图。首先从一个空序列V开始,第一步选择V的第一个顶点。此时,在有向图中有两个候选顶点1和2,若选择顶点2,则序列V = 2,第一步完成。第二步选择V的第二个顶点,根据贪婪准则可知候选顶点为1和5,若选择5,则V = 2 5。下一步,顶点1是唯一的候选,因此V = 2 5 1。第四步,顶点3是唯一的候选,因此把顶点3加入V
/ i2 `0 Q$ H% n' J; p得到V = 2 5 1 3。在最后两步分别加入顶点4和6 ,得V = 2 5 1 3 4 6。 & R4 V1 ~ v- V: d. j0 w1 I
1. 贪婪算法的正确性 $ F* y9 P. A' b/ C" p- K: U( x
为保证贪婪算法算的正确性,需要证明: 1) 当算法失败时,有向图没有拓扑序列; 2) 若
% ?' f) |# Y9 t, x# q算法没有失败,V即是拓扑序列。2) 即是用贪婪准则来选取下一个顶点的直接结果, 1) 的证明见定理1 3 - 2,它证明了若算法失败,则有向图中有环路。若有向图中包含环qj qj + 1.qk qj , 则它没有拓扑序列,因为该序列暗示了qj 一定要在qj 开始前完成。 + a/ h) }5 x- P4 Z
定理1-2 如果图1 3 - 5算法失败,则有向图含有环路。
; i4 y9 ~& W7 @' l0 f& m证明注意到当失败时| V |
7 M/ v5 X2 p6 }5 n2. 数据结构的选择 % m% z7 j' x& l% N- h c
为将图1 - 5用C + +代码来实现,必须考虑序列V的描述方法,以及如何找出可加入V的候选顶点。一种高效的实现方法是将序列V用一维数组v 来描述的,用一个栈来保存可加入V的候选顶点。另有一个一维数组I n D e g r e e,I n D e g r e e[ j ]表示与顶点j相连的节点i 的数目,其中顶点i不是V中的成员,它们之间的有向图的边表示为( i, j)。当I n D e g r e e[ j ]变为0时表示j 成为一个候选节点。序列V初始时为空。I n D e g r e e[ j ]为顶点j 的入度。每次向V中加入一个顶点时,所有与新加入顶点邻接的顶点j,其I n D e g r e e[ j ]减1。对于有向图1 - 4,开始时I n D e g r e e [ 1 : 6 ] = [ 0 , 0 , 1 , 3 , 1 , 3 ]。由于顶点1和2的I n D e g r e e值为0,因此它们是可加入V的候选顶点,由此,顶点1和2首先入栈。每一步,从栈中取出一个顶点将其加入V,同时减去与其邻接的顶点的I n D e g r e e值。若在第一步时从栈中取出顶点2并将其加入V,便得到了v [ 0 ] = 2,和I n D e g r e e [ 1 : 6 ] = [ 0 , 0 , 1 , 2 , 0 , 3 ]。由于I n D e g r e e [ 5 ]刚刚变为0,因此将顶点5入栈。
8 J* L7 f' V$ [1 n- ~; U程序1 3 - 2给出了相应的C + +代码,这个代码被定义为N e t w o r k的一个成员函数。而且,它对于有无加权的有向图均适用。但若用于无向图(不论其有无加权)将会得到错误的结果,因为拓扑排序是针对有向图来定义的。为解决这个问题,利用同样的模板来定义成员函数AdjacencyGraph, AdjacencyWGraph,L i n k e d G r a p h和L i n k e d W G r a p h。这些函数可重载N e t w o r k中的函数并可输出错误信息。如果找到拓扑序列,则Topological 函数返回t r u e;若输入的有向图无拓扑序列则返回f a l s e。当找到拓扑序列时,将其返回到v [ 0 :n- 1 ]中。 ) p2 p0 x6 w0 C' z* K. I9 }& Q B6 l" j
3. Network:Topological 的复杂性
2 c1 e$ \, _8 G X' P& ^) a第一和第三个f o r循环的时间开销为(n )。若使用(耗费)邻接矩阵,则第二个for 循环所用的时间为(n2 );若使用邻接链表,则所用时间为(n+e)。在两个嵌套的while 循环中,外层循环需执行n次,每次将顶点w 加入到v 中,并初始化内层while 循环。使用邻接矩阵时,内层w h i l e循环对于每个顶点w 需花费(n)的时间;若利用邻接链表,则这个循环需花费dwout 的时间,因此,内层while 循环的时间开销为(n2 )或(n+e)。所以,若利用邻接矩阵,程序1 3 - 2的时间复杂性为(n2 ),若利用邻接链表则为(n+e)。 & B, Z! u4 ^. B1 C
程序13-2 拓扑排序 8 G+ B- U }3 w: V
bool Network::Topological(int v[])
; [. L# O% c, W. d{// 计算有向图中顶点的拓扑次序 + o1 m- [4 s4 m+ ~
// 如果找到了一个拓扑次序,则返回t r u e,此时,在v [ 0 : n - 1 ]中记录拓扑次序 7 l) K* L' U$ V: n8 z$ L8 g5 F* F/ g
// 如果不存在拓扑次序,则返回f a l s e 8 Q) v3 S' r3 K" D! C3 c
int n = Ve r t i c e s ( ) ; 6 g; ]3 k1 B7 k1 }- |& f$ X
// 计算入度 $ r" K6 t' g% j2 `
int *InDegree = new int [n+1];
, D) b9 ]( l6 k# d6 p u% C% NInitializePos(); // 图遍历器数组 ) V) V/ S$ E% b+ s9 i! O$ ~5 L
for (int i = 1; i <= n; i++) // 初始化
$ j3 p) {* ^* a* I& W) x XInDegree = 0; O7 I. a& ^0 N; l6 Z7 V/ R' o
for (i = 1; i <= n; i++) {// 从i 出发的边 6 G w5 L: t9 n; _9 l0 }) `
int u = Begin(i); 2 Z' J2 F( g( W' t* E0 o7 n! R F
while (u) { * d& M7 ?' ]/ u& T* n ]
I n D e g r e e [ u ] + + ;
4 M" b+ A: K% |3 y% e' |( [" U: o, {u = NextVe r t e x ( i ) ; }
! ~1 w+ R! _4 [}
! _6 D9 d9 W; J C2 v1 O# v// 把入度为0的顶点压入堆栈
y. H* v0 A1 \( z$ ~- ULinkedStack S; ( @7 _' w# f2 |! A5 u* G: T
for (i = 1; i <= n; i++) 6 S! x4 \$ L7 ^& f
if (!InDegree) S.Add(i);
4 i+ H3 r1 O/ g% o( K' y// 产生拓扑次序 ( @# ]5 ?9 ?+ x' q; y
i = 0; // 数组v 的游标
7 Z5 L& i" u, l" r3 Xwhile (!S.IsEmpty()) {// 从堆栈中选择
) Z: c5 v+ a" n/ u$ X7 q" `int w; // 下一个顶点
5 ]" B: [! o& }/ E( q/ M2 |S . D e l e t e ( w ) ; - B2 p/ U% G; ^. U0 M# j* _ E
v[i++] = w;
+ F% |1 _/ @" A, x" fint u = Begin(w);
1 ?* w. u4 Z2 S0 J) Xwhile (u) {// 修改入度
6 }- t7 r! P. m. K6 c$ P: g; bI n D e g r e e [ u ] - - ;
( @, P }5 [( f' `! ]& L$ W+ e) yif (!InDegree) S.Add(u);
5 l- O! H* g1 o3 U* _u = NextVe r t e x ( w ) ; } # C! I9 }% I- E" Q
} - \' {. d2 Q c$ `' Z N9 t0 p
D e a c t i v a t e P o s ( ) ; 8 E1 j' M4 y8 Z. ~, Q! j
delete [] InDegree; " i* Y& S- F) p' Y- M" B
return (i == n);
E% E- D; K0 C! q1 O} |