- 在线时间
- 6 小时
- 最后登录
- 2017-2-16
- 注册时间
- 2011-3-28
- 听众数
- 3
- 收听数
- 0
- 能力
- 0 分
- 体力
- 143 点
- 威望
- 0 点
- 阅读权限
- 20
- 积分
- 48
- 相册
- 0
- 日志
- 0
- 记录
- 0
- 帖子
- 10
- 主题
- 1
- 精华
- 0
- 分享
- 0
- 好友
- 0
升级   45.26% 该用户从未签到
|
題目如下, 請高手幫幫忙 ^^
! W- ^' R, d9 [/ i# ~) w1. Write a function that as input has an expression f, and returns the logarithmic derivate 1/f (d f)/(d x) . Use a conditional or pattern test to make your function accept any symbols as input except for lists.
# V# g% i' d- L7 ]2 s6 M4 [
3 Q( Y1 S4 H; U* E0 `2.
$ V9 ^( I g$ k8 P$ l2 Ma) Write a recursive function that computes the function f[n] defined by 6 n f[n]=f[n-1]+n! for n>0, and f[0]=7. Restrict the argument to positive integers.! A3 E' n8 m9 m
b) Write and test a program that computes f[n] using Module and a While loop.
7 y- i0 a/ Z Z) l2 mc) Compare the timings of the two methods by computing f[n] in both cases for very large values of n and/or doing the computation many times. You may have to use Clear or restart to clear Mathematica's memory of previous calculations. Explain your results.
: A3 g0 n: d9 S% y3 V6 h0 T+ @/ S% y) Z4 S
Consider the iterative map Subscript[x, n] == 1/2 Subsuperscript[x, n-1, 2] -\[Mu]. ; ~& m! v1 i4 X9 U& A! [9 F
a) Compute its fixed points and 2-cycles as a function of \[Mu].
# q+ M5 \: q6 B& c$ C+ db) Using linear stability analysis, compute the range of stability of both the fixed points as well as the 2-cycles.
5 K/ C# g4 J) ~4 }$ P1 Jc) Show cobweb diagrams for representative parameters illustrating the (un)stable fixed point and 2-cycle.
+ `; ~# H4 L+ q4 b- Hd) Graphically demonstrate the onset of a stable 3-cycle.& k2 m6 ? O4 s9 C V
e) Produce the bifurcation diagram. |
|