QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 3873|回复: 6
打印 上一主题 下一主题

实二次域(5/50)例2

[复制链接]
字体大小: 正常 放大
lilianjie        

43

主题

4

听众

204

积分

升级  52%

  • TA的每日心情
    开心
    2012-1-13 11:05
  • 签到天数: 15 天

    [LV.4]偶尔看看III

    跳转到指定楼层
    1#
    发表于 2012-1-4 14:05 |只看该作者 |倒序浏览
    |招呼Ta 关注Ta
    本帖最后由 lilianjie 于 2012-1-4 17:59 编辑 - j  m9 X$ s/ L  A# ?) j3 q

    % ?1 C' D1 n/ A* o/ DQ5:=QuadraticField(5) ;7 I4 w  }! k; J+ }7 M9 T
    Q5;
    ( {/ E( @" d; M% UQ<w> :=PolynomialRing(Q5);Q;7 {1 A4 D0 ?/ A2 M0 X
      V* q/ H% k- z; \& B0 M
    EquationOrder(Q5);3 g3 m+ Z3 y' N9 b9 }1 k
    M:=MaximalOrder(Q5) ;* b8 U0 F% X4 a& N
    M;- m0 _0 I- B8 A4 m: g( \  K
    NumberField(M);
    2 m; v1 N- R/ fS1:=sub< M | 1 >;S2:=sub< M | 2 >;S3:=sub< M | 3 >;S4:=sub< M | 4 >;S5:=sub< M | 5 >;S25:=sub< M | 25 >;S625888888:=sub< M | 625888888 >;S625888888;% n+ u$ S2 R2 [
    IsQuadratic(Q5);IsQuadratic(S1);IsQuadratic(S4);IsQuadratic(S25);IsQuadratic(S625888888);3 L9 ^& a5 V! m" g; u0 l. I9 Z
    Factorization(w^2-3);
    , l1 T3 C* p& v% @$ `, o9 @Discriminant(Q5) ;& _. Q' c" D+ z
    FundamentalUnit(Q5) ;! h& H; L! M$ x* F
    FundamentalUnit(M);8 f- G' r/ L: M4 o. X) O
    Conductor(Q5) ;+ k; r3 k8 a$ X8 k# e3 S6 a
    Name(Q5, 1);5 I- m; p, R1 N
    Name(M, 1);
    . B! ~0 R" w3 L6 U! b2 nConductor(M);* i7 H1 ?! y5 u8 }' H: f6 f5 x
    ClassGroup(Q5) ;
    ! x4 x2 h* |# m3 e# x) Y+ U$ g# {ClassGroup(M);4 u4 y% I  f5 Q) F# S) ?4 R
    ClassNumber(Q5) ;( S1 w3 C, O  \
    ClassNumber(M) ;
    9 J& f/ s% {2 n$ T* ?
    8 [1 n% k$ I! q/ q! [+ P& N6 wPicardGroup(M) ;' ~9 \; A! [6 }) S+ a
    PicardNumber(M) ;' D  ]  T, M3 y' I, v) U8 w  Q
    - \$ }3 }1 \. g& N+ N
    # c, r- d3 p! D1 _
    QuadraticClassGroupTwoPart(Q5);+ p+ x7 a& i0 |/ n0 @+ O) m8 O- L
    QuadraticClassGroupTwoPart(M);( j0 C' {5 l) \1 u6 h/ Q. _; m
    ! l9 D0 y8 R0 q5 z

    . s: ^! M$ ^6 M3 V  sNormEquation(Q5, 5) ;
    & W8 H3 ^* x( f& T  \$ l0 u0 cNormEquation(M, 5) ;
    & w- H+ b/ E& A% F7 g) e. k
    . _  f+ L( V; w- j8 u' v- J
    ! i- k- ^: i. e7 l( H$ OQuadratic Field with defining polynomial $.1^2 - 5 over the Rational Field
    0 [+ P: h9 u# ^" D- ~Univariate Polynomial Ring in w over Q5) T! F/ \/ T( X. n
    Equation Order of conductor 2 in Q50 R) e" c! i6 J" n
    Maximal Order of Q5
    / i# e4 C' z9 PQuadratic Field with defining polynomial $.1^2 - 5 over the Rational Field1 Q6 W% _8 t" i1 A1 R6 A/ }/ Y* |
    Order of conductor 625888888 in Q5, C5 A2 W/ |* r1 u9 l+ @; F9 v
    true Quadratic Field with defining polynomial $.1^2 - 5 over the Rational Field+ R9 T/ G6 q: X; f  }
    true Maximal Order of Q5
    : Q! X$ J' c" Z7 F: x; vtrue Order of conductor 16 in Q5
    ) C# [# D) E2 x# d: Etrue Order of conductor 625 in Q5# F, c3 d. ]# h# T9 i
    true Order of conductor 391736900121876544 in Q5
    , r: o: `0 C- H% N  q2 Z& v[1 J8 x" C4 S2 W) w0 m# r, N, m
        <w^2 - 3, 1>* ^2 m( @! m+ u$ S9 G2 o
    ]
    " @% w3 r  V. q* }: d' Y) I1 |5
    1 _% ]5 k+ `6 i1/2*(-Q5.1 + 1)  T( l* ]6 a8 R: P# B& U6 ~. U6 U
    -$.2 + 1+ T$ M6 r2 {. N
    5$ I& v4 N! I! T+ I( [
    Q5.1
    1 n% D7 A, x& y& [* J1 J$.2
    ( \0 b$ u0 |7 W0 M8 X19 U% o$ i$ L0 q) K& x/ b. k5 i5 I# L
    Abelian Group of order 1, b3 a8 m8 s) J" @: i3 y
    Mapping from: Abelian Group of order 1 to Set of ideals of M
    " T/ d9 n( k5 T, u. k( VAbelian Group of order 1
    - x9 ], a& G) x2 D, {Mapping from: Abelian Group of order 1 to Set of ideals of M
    ; B0 j/ G* O, Y" V5 }9 V9 l17 N# W) ?! l3 R
    18 w; e7 G) e- o1 S+ I
    Abelian Group of order 1
    1 J% @1 ~8 _4 Y4 b+ fMapping from: Abelian Group of order 1 to Set of ideals of M given by a rule [no; S7 N* B, Y; H( {3 v
    inverse]
    1 y- [0 @8 N+ x; I1
    4 \6 x. G. I. b& PAbelian Group of order 1- G# M3 U: r8 d1 H5 Q' ?5 R( Z) E  v6 G$ w
    Mapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant# P* P4 b: Q5 L5 z& d
    5 given by a rule [no inverse]8 I* M. q& x/ S  {# M8 H( ^
    Abelian Group of order 1* V3 B1 R' c( Y3 O4 b; R2 j
    Mapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant
    ; {+ j3 e8 T# y- P5 given by a rule [no inverse]1 X$ K! f; o6 [1 X# ~
    true [ 1/2*(Q5.1 + 5) ]
    ' Y& h9 o# @, \true [ -2*$.2 + 1 ]
    $ v9 W4 ]- W" J* c
    + _5 T. Y0 X7 ^3 F0 z0 d1 E9 z6 _) Q9 J- k" ?8 H

    " Q! j! |  i) o8 L
    . p6 Z7 x4 U* _
    7 }& Y, M+ F' p& u- _9 s3 q! C* {% D1 r, }$ g

    $ q$ u0 d; \7 j% _) V" q! j
    1 z+ f4 J0 L$ y: j  k5 I; A* ?0 m
    6 F0 l: u! i1 y0 m& T/ S
    - }: s( h% N: K7 e4 _+ \
    $ {7 \/ T0 ?- c) O==============
    ! E: n5 U9 A! Y7 A3 h9 y( J* s
    3 T$ B$ ?( A3 U, B- |+ oQ5:=QuadraticField(50) ;6 O) t1 _6 \1 v$ e% V" w
    Q5;. s& L8 o3 ^: c7 U1 J
    1 J/ H( N4 m* z1 p- Q6 h
    Q<w> :=PolynomialRing(Q5);Q;
    + m* i! I' }8 ?) REquationOrder(Q5);# ~/ \! y% f. W
    M:=MaximalOrder(Q5) ;, s' u5 c1 v) ?1 U* n) G' f
    M;9 R0 U  h: U- W+ F' u# M) ~
    NumberField(M);
    / }! L* U* T& f. `4 C+ Y* RS1:=sub< M | 1 >;S2:=sub< M | 2 >;S3:=sub< M | 3 >;S4:=sub< M | 4 >;S5:=sub< M | 5 >;S25:=sub< M | 25 >;S625888888:=sub< M | 625888888 >;S625888888;
    + Y2 D/ F" n/ e* lIsQuadratic(Q5);% P0 i; u* D8 q' r9 q
    IsQuadratic(S1);
    4 p. c2 m, S8 N5 @IsQuadratic(S4);
    ' h4 R7 @- }0 t  g! N) GIsQuadratic(S25);" _, v- d' c2 n7 J
    IsQuadratic(S625888888);6 l7 F7 Y! e9 c* Z
    Factorization(w^2-50);  $ {2 N6 R! a# l. @$ A( h% c
    Discriminant(Q5) ;' q+ _  _# S7 A0 `! m' M0 k
    FundamentalUnit(Q5) ;+ ]2 i0 b5 Z. ?$ n
    FundamentalUnit(M);
    & L" f6 ?! [; t( r% EConductor(Q5) ;
    9 @4 x( i$ \  |+ w: L2 A, N2 i  K
    # c' M" |" @# z% M7 n4 \! T' [+ P5 u- ]! \Name(M, 50);: p% q/ x& U+ S5 W' [
    Conductor(M);
    ! f0 p6 X" `" u6 J$ K% @/ iClassGroup(Q5) ;
    3 s: r/ N1 j7 n* bClassGroup(M);  c2 b# Q: Q, l1 ]2 M
    ClassNumber(Q5) ;  F4 b( x1 B; j( V' J, E
    ClassNumber(M) ;2 M/ J9 h7 q, L2 f
    PicardGroup(M) ;
    $ e2 K$ O5 R. m3 z; x3 X2 {PicardNumber(M) ;% I" a2 D6 _  l

    ( n" }$ X5 r1 |. PQuadraticClassGroupTwoPart(Q5);$ y' a! ?; n2 I  q/ j$ A
    QuadraticClassGroupTwoPart(M);
    * c3 r) y, n; z: q9 qNormEquation(Q5, 50) ;
    7 ~) t) q" q& WNormEquation(M, 50) ;
    0 K2 I  y7 ?; H: o1 N; q$ Q5 l2 `5 Y3 n9 K6 G$ T
    Quadratic Field with defining polynomial $.1^2 - 2 over the Rational Field
    9 m5 H& I  V/ G% J( J! V$ hUnivariate Polynomial Ring in w over Q5& i! q, z% G+ Y
    Equation Order of conductor 1 in Q5
    0 \" e, C& C: {, t. yMaximal Equation Order of Q5
      F/ x( k" _6 w! |+ ]& S& ZQuadratic Field with defining polynomial $.1^2 - 2 over the Rational Field7 e/ \, i/ F  l; x& O
    Order of conductor 625888888 in Q53 I) E$ B5 g( e
    true Quadratic Field with defining polynomial $.1^2 - 2 over the Rational Field
    + D1 M5 j" M6 \( R3 S) q1 n: G! j" rtrue Maximal Equation Order of Q5
    . \1 [) w( D1 G: b, H2 |9 Itrue Order of conductor 1 in Q5
    ! ?2 n' A! X# O% qtrue Order of conductor 1 in Q5
    0 `' J3 q) ]$ i; A7 @& w7 q8 w% E- otrue Order of conductor 1 in Q54 S0 f( k" W4 k! J8 q
    [5 D  y1 b' ]) y5 ]6 s7 v
        <w - 5*Q5.1, 1>,
    4 \/ j) S; r+ X" U7 ~3 C    <w + 5*Q5.1, 1>+ `1 q5 E7 e) g9 n+ ^& H
    ]
    1 F' _" V8 p8 @$ H, E/ J1 L85 G$ w/ S: q% a! G2 ^. e  m
    Q5.1 + 1
    : j+ q" C% c% T. Y: }9 j9 w( F$.2 + 1
    - u- X+ `1 V. Z; P; c$ ^83 t: _  T! @5 w( r

    . A8 W4 Y' X8 ^! t) `$ P>> Name(M, 50);
    ! }$ h, N+ b& Z) \. q       ^- ]! D1 P& ^" Q0 F+ ?$ v' _* b6 u" n
    Runtime error in 'Name': Argument 2 (50) should be in the range [1 .. 1]2 C$ s. E9 Y4 D, B! j) b$ P- J

    0 \" k# o8 R2 m5 V- j1
    " t2 S' `5 E3 P2 vAbelian Group of order 1! `; m& Q% J8 d8 f4 J
    Mapping from: Abelian Group of order 1 to Set of ideals of M# \2 X4 d: p8 y, j4 F7 D3 F9 e
    Abelian Group of order 1
    / {( q3 W/ t  ^) E% O% V+ `Mapping from: Abelian Group of order 1 to Set of ideals of M) O* A, U+ k$ r1 V
    1; U+ h9 F. ~3 f. Z
    17 t/ k2 P1 g2 ?8 R6 r& C
    Abelian Group of order 1
    2 e$ l, q7 ]' M5 `+ K0 HMapping from: Abelian Group of order 1 to Set of ideals of M given by a rule [no1 g* h9 G( N& T& X& ?( p
    inverse]9 h, N: a( [; n8 E, W3 u
    1
    6 j" M. {3 n% NAbelian Group of order 17 K  b% r' v0 h3 [
    Mapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant
    3 T2 J; U9 g/ ]* m* {8 given by a rule [no inverse]7 l6 _- v: |: O  U4 D0 A
    Abelian Group of order 1) C3 ?! E8 l0 x. P$ M, e4 S6 L$ G
    Mapping from: Abelian Group of order 1 to Binary quadratic forms of discriminant; H" E6 o( P# Y+ N9 Z/ a
    8 given by a rule [no inverse]
    - B' H1 H& ?8 w0 a' `4 e2 qtrue [ 5*Q5.1 + 10 ]! j2 s( e( z" f: u2 L# b, f5 l
    true [ -5*$.2 ]
    zan
    转播转播0 分享淘帖0 分享分享0 收藏收藏0 支持支持0 反对反对0 微信微信
    lilianjie        

    43

    主题

    4

    听众

    204

    积分

    升级  52%

  • TA的每日心情
    开心
    2012-1-13 11:05
  • 签到天数: 15 天

    [LV.4]偶尔看看III

    二次域上的分歧理论

    1.JPG (177.16 KB, 下载次数: 282)

    1.JPG

    回复

    使用道具 举报

    lilianjie        

    43

    主题

    4

    听众

    204

    积分

    升级  52%

  • TA的每日心情
    开心
    2012-1-13 11:05
  • 签到天数: 15 天

    [LV.4]偶尔看看III

    本帖最后由 lilianjie 于 2012-1-5 12:42 编辑 6 Z3 {/ C$ U) i3 k8 B

    5 V5 W9 a/ s+ e) B. T2 x基本单位计算fundamentalunit :
    & _3 q- g& X* ~" F$ q7 Y5 mod4 =1                                              50 mod 4=2
    % F, I, r3 F. D  ^, P' A" ?  _3 `
    9 I: r4 U! z8 } x^2 - 5y^2 = -1.                                 x^2 - 50y^2 = 1.$ X! [: p% x  }) c
    x^2 - 5y^2 = 1.                                  x^2 - 50y^2 = -1.3 X  U' S/ K: E. e
    ! u  u7 f/ \+ Z  \/ q

    ! [/ A, j; w, }1 C# g& n( |# K最小整解(±2,±1)                              最小整解(±7,±1)0 T+ D" D8 v% L% r
                                                                 ±7 MOD2=1) N/ [4 O6 X+ Y

    ; W: |. G" S6 O9 Q两个基本单位:

    11.JPG (3.19 KB, 下载次数: 264)

    11.JPG

    回复

    使用道具 举报

    15

    主题

    4

    听众

    113

    积分

    升级  6.5%

  • TA的每日心情
    开心
    2012-1-13 11:49
  • 签到天数: 9 天

    [LV.3]偶尔看看II

    lilianjie 发表于 2012-1-4 18:31 ( h0 Y" ^2 ^) w1 [( H/ T
    基本单位fundamentalunit :
    & ?- a+ J( s4 x% |7 R+ J2 }5 mod4 =1                              50 mod 4=2
    $ H: [+ S7 y) ]# z
    基本单位fundamentalunit

    3.JPG (105.07 KB, 下载次数: 260)

    3.JPG

    2.JPG (140.29 KB, 下载次数: 266)

    2.JPG

    1.JPG (193.2 KB, 下载次数: 265)

    1.JPG

    回复

    使用道具 举报

    15

    主题

    4

    听众

    113

    积分

    升级  6.5%

  • TA的每日心情
    开心
    2012-1-13 11:49
  • 签到天数: 9 天

    [LV.3]偶尔看看II

    本帖最后由 lilianjie1 于 2012-1-4 19:16 编辑
    1 ~# P. ]$ y1 {4 p5 K6 N
    " e: t* l, j( D! z+ S判别式计算Discriminant
    " D& d: X! l- K# b" v2 x1 c/ h4 P9 [2 Q
    5MOD 4=1 - [. a0 G# ?$ `+ L, H( q
    / m& w) r" F: e/ J$ f
    (1+1)/2=1          (1-1)/2=0
    9 ^( o2 _3 u  a# V/ W9 H: x) J3 f$ d2 U7 d$ ]3 p. l
    D=52 b9 e1 k8 S: M1 X  }  Y' F+ [) u
    & D8 e- B  {6 _  O  \
    2 l$ H. U$ N8 q! F2 v! m
    50MOD 4=2
    8 n( K( c: B) [5 U/ jD=2*4=8

    33.JPG (165.31 KB, 下载次数: 259)

    33.JPG

    22.JPG (137.12 KB, 下载次数: 249)

    22.JPG

    11.JPG (163.36 KB, 下载次数: 287)

    11.JPG

    回复

    使用道具 举报

    74

    主题

    6

    听众

    3289

    积分

    升级  42.97%

  • TA的每日心情
    无聊
    2015-9-4 00:52
  • 签到天数: 374 天

    [LV.9]以坛为家II

    社区QQ达人 邮箱绑定达人 发帖功臣 最具活力勋章

    群组数学建摸协会

    群组Matlab讨论组

    群组小草的客厅

    群组数学建模

    群组LINGO

    回复

    使用道具 举报

    lilianjie        

    43

    主题

    4

    听众

    204

    积分

    升级  52%

  • TA的每日心情
    开心
    2012-1-13 11:05
  • 签到天数: 15 天

    [LV.4]偶尔看看III

    lilianjie 发表于 2012-1-9 20:44 & Y# S. S/ X, F& q! x/ ]$ I* q8 v6 i2 l
    6 ~% q; H  x* C7 }* l7 }0 x; b3 S1 `
    分圆多项式总是原多项式因子:3 ~+ w9 q/ P1 N: N% o* G
    C:=CyclotomicField(5);C;6 e9 I+ x* u6 D4 a! L# u
    CyclotomicPolynomial(5);
    # C% v  G! Q( w- |
    4 {) K* y. ]% ~% P- M1 @
    分圆域:, ?; d0 m$ F& |* O5 l
    分圆域:123
    6 R" \3 ]+ Z% o7 O7 a, d- u% b# ~# M3 k7 m& q, p
    R.<x> = Q[]
    7 `+ E6 U3 s% I1 V$ g- qF8 = factor(x^8 - 1)
    ' i0 t1 d1 `. g; m+ fF86 M+ a' p4 V% R' ]" u) C

    * c4 _0 J: K# j7 |; h(x - 1) * (x + 1) * (x^2 + 1) * (x^4 + 1)(x - 1) * (x + 1) * (x^2 + 1) * (x^4 + 1)
    - T# n( S5 Q. h0 {
    * J* \! z, s0 g* u1 @* }  P" E; IQ<x> := QuadraticField(8);Q;
    ' @% x7 h0 g: e3 Q9 {: r; FC:=CyclotomicField(8);C;
    1 h- h: r- u1 D0 _; w% ]6 SFF:=CyclotomicPolynomial(8);FF;
    # Q0 h2 K8 u1 z  T
    : `5 \3 K) A# m  o; eF := QuadraticField(8);  c0 ~4 q+ I  _) b  {, m% W
    F;/ j# s, Y$ L" Z# x
    D:=Factorization(FF) ;D;
    + [" s9 C8 g4 j$ F. z7 w4 fQuadratic Field with defining polynomial $.1^2 - 2 over the Rational Field1 P( Q8 n# z) g7 p. z% K
    Cyclotomic Field of order 8 and degree 45 S/ {) B/ X" M3 S8 q, ]
    $.1^4 + 1! Y5 o- w1 u# t# p" m
    Quadratic Field with defining polynomial $.1^2 - 2 over the Rational Field  z) K8 x# Q( `' ]6 y0 d
    [
    9 S; n3 q! z6 r( q    <$.1^4 + 1, 1>
    8 _. f8 a/ x; y$ ]  B]
    2 J' v/ k! L; p% m' g# ?  T
    1 G4 w6 h3 B& c" cR.<x> = QQ[]
    1 u/ Q8 m& D4 v5 N3 ^: AF6 = factor(x^6 - 1)
    8 Z# w; S4 y/ u: d9 z1 A1 }F6
    & X' j0 Z  e5 g4 g$ n+ E: v: j, Q7 s" c7 w5 @
    (x - 1) * (x + 1) * (x^2 - x + 1) * (x^2 + x + 1)(x - 1) * (x + 1) * (x^2 - x + 1) * (x^2 + x + 1)
    4 _' Z+ J! v# R8 J
    ( ^) n0 z. z8 Z- D. X, LQ<x> := QuadraticField(6);Q;
    2 G# N, I& P9 X# d- W; o2 Q, ^C:=CyclotomicField(6);C;
    : I# q( h3 D( H: {2 i* SFF:=CyclotomicPolynomial(6);FF;4 f! w1 o( d' e' Z
    ) d( [  K: B3 |% p7 Z# O  u
    F := QuadraticField(6);
    ; f: V- |) h; t  V2 GF;# S7 A; J& W5 g/ d) o+ f  j
    D:=Factorization(FF) ;D;
    / i& R: m7 Q/ Z: S! s3 PQuadratic Field with defining polynomial $.1^2 - 6 over the Rational Field- [; b) }0 H5 V# I  G6 W
    Cyclotomic Field of order 6 and degree 2. X) }6 y# V/ @- Z: T& y
    $.1^2 - $.1 + 1  P# N$ m& C/ x& F1 x1 z
    Quadratic Field with defining polynomial $.1^2 - 6 over the Rational Field
    * P5 e, A4 N5 h% |! r[
    : O7 _5 v" _1 X    <$.1^2 - $.1 + 1, 1>* q2 @+ e! O" ^* n
    ]5 W1 G" v! I6 j4 H( w' M# ]- {* @
    # k  X9 T2 V% O! K- C: F1 o
    R.<x> = QQ[]2 i3 _) h5 W6 W5 }5 `0 N
    F5 = factor(x^10 - 1)
    6 |! l% Z  I  V: ~' fF5
    # _( s/ F* I+ F% r2 ](x - 1) * (x + 1) * (x^4 - x^3 + x^2 - x + 1) * (x^4 + x^3 + x^2 + x +
    & V/ |; A+ u8 J1 u8 `: H% u1)(x - 1) * (x + 1) * (x^4 - x^3 + x^2 - x + 1) * (x^4 + x^3 + x^2 + x + 1)
    & }& t7 y2 N5 _  [# K; K
    ' a/ q0 K2 g5 v" d: p6 r4 J, LQ<x> := QuadraticField(10);Q;, Q6 m2 j; q1 z+ {8 s0 I1 o
    C:=CyclotomicField(10);C;. a7 R9 A: V9 f1 }+ l, Q; U6 H
    FF:=CyclotomicPolynomial(10);FF;
    8 \) M- u' Q/ k4 C3 D; z
    . n( a- V* X. q2 d: g  J1 PF := QuadraticField(10);, `8 Q4 L8 h, a( R; I- E: u
    F;# p; _5 q" f, T- S5 M# u
    D:=Factorization(FF) ;D;1 [2 U% n% @9 b$ N" e
    Quadratic Field with defining polynomial $.1^2 - 10 over the Rational Field0 Q- W3 U* f. k4 r5 J
    Cyclotomic Field of order 10 and degree 4
    0 b7 G6 Y7 E/ c  x) m" |" F$.1^4 - $.1^3 + $.1^2 - $.1 + 17 \( m3 w0 y& B1 t+ n0 B$ i
    Quadratic Field with defining polynomial $.1^2 - 10 over the Rational Field% x" e: O0 [: {5 M$ O+ S
    [
    1 c5 f- }8 z* o2 ^% v% m1 c    <$.1^4 - $.1^3 + $.1^2 - $.1 + 1, 1>9 x2 K: q2 N7 C* S. Q4 A8 V
    ]
    回复

    使用道具 举报

    您需要登录后才可以回帖 登录 | 注册地址

    qq
    收缩
    • 电话咨询

    • 04714969085
    fastpost

    关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

    手机版|Archiver| |繁體中文 手机客户端  

    蒙公网安备 15010502000194号

    Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

    GMT+8, 2025-7-12 15:10 , Processed in 0.813370 second(s), 86 queries .

    回顶部