QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 4553|回复: 3
打印 上一主题 下一主题

标准粒群优化算法程序

[复制链接]
字体大小: 正常 放大
ppbear321        

25

主题

7

听众

15

积分

升级  10.53%

该用户从未签到

跳转到指定楼层
1#
发表于 2009-8-12 13:25 |只看该作者 |倒序浏览
|招呼Ta 关注Ta
%标准粒群优化算法程序6 Z, J# O9 C- r0 B3 U
% 2007.1.9 By jxy' @( Q3 B) y! G5 a' C9 o
%
测试函数:f(x,y)=100(x^2-y)^2+(1-x)^2, -2.048<x,y<2.048% p  ~0 }$ I% y$ v& M
%求解函数最小值
! Y) t4 f" l/ v, Y2 f; w, w- _
" D0 ?7 G! H- j' N5 T+ \( Dglobal popsize; %种群规模; Y2 s  t% t7 r" s1 u5 }7 B
%global popnum; %种群数量
8 x# I( i* ^, P  h! ~global pop; %种群
* Z. @' X" B# K%global c0; %速度惯性系数,0—1的随机数
, V. D! q' k( v* A# W! E: dglobal c1; %个体最优导向系数+ K- z8 @7 M) T4 j* w! k
global c2; %全局最优导向系数
, m9 m3 N: J/ I% zglobal gbest_x; %全局最优解x轴坐标
  H+ E# }) N" {* [global gbest_y; %全局最优解y轴坐标% G3 S' R6 @0 T5 O# @7 F# i3 H4 I7 j  v
global best_fitness; %最优解3 c$ O/ {9 i6 W
global best_in_history; %最优解变化轨迹
/ c: |. o# O0 [8 qglobal x_min; %x的下限4 X1 t/ q4 g4 M6 I
global x_max; %x的上限& k" f0 Z: h9 ~% K, G$ L
global y_min; %y的下限& u% ?! e; x! Z% D) D
global y_max; %y的上限
/ d' B& t2 n. i/ ?4 }5 lglobal gen; %迭代次数
; g7 o% d7 x5 C  C9 zglobal exetime; %当前迭代次数2 P1 m9 X3 g4 z8 t4 D) H5 {- F
global max_velocity; %最大速度6 m. G) V8 P7 w9 Q9 r% e

1 z. y4 P  j$ _- V% t- K' `initial; %初始化+ @; d  |6 c" t, D
) y$ P8 i# d+ J: i3 O: {
for exetime=1:gen
2 m) N7 B8 ^( ]4 Voutputdata; %
实时输出结果4 P, H; a' G3 t% T3 _0 P; d
adapting; %计算适应值
; T( w7 G7 Q2 A( w" P- ]* M+ Yerrorcompute(); %计算当前种群适值标准差4 n1 h9 T( l6 J- H2 v& E. z/ U
updatepop; %更新粒子位置9 W% x6 _4 F, \" h
pause(0.01);3 |% G3 c7 W' ~
end3 U8 t1 W" D' ]1 ^0 h

* }: X; O  g% U% U" {clear i;
( V# T( m" z1 {; U/ |clear exetime;
$ b! _1 V( D, t) F+ _' Hclear x_max;& @# o7 i; `" C& E# a
clear x_min;
( ?; d. p( V8 P- d: ?  t2 aclear y_min;. q: Y, q6 n- x4 o6 k' ?
clear y_max;/ M3 Q2 i# i+ E0 l: u" H
1 C, D7 R- ~7 U& L5 ^' I0 z
%
程序初始化% s; P" r2 [# ]

+ q, Y+ E5 a7 z8 \gen=100; %设置进化代数
) t' Y7 o* O& xpopsize=30; %设置种群规模大小
; x* f/ a9 T* |) {3 L/ i2 U5 ?best_in_history(gen)=inf; %初始化全局历史最优解  k6 z2 J$ v0 S- S; x  w5 k/ ?$ _5 e
best_in_history( =inf; %初始化全局历史最优解
8 _2 {+ z3 M  i& f( ?  x4 E: ymax_velocity=0.3; %最大速度限制
3 B  [- q) R! @- f1 l5 abest_fitness=inf;6 F5 o; |) d. k! r
%popnum=1; %
设置种群数量
9 t: ]; q+ ~8 h; v/ X, p) t
1 D" j- v! ?- G- r" Qpop(popsize,8)=0; %初始化种群,创建popsize5列的0矩阵7 r. ?1 Q: h  n; `1 D. ?
%种群数组第1列为x轴坐标,第2列为y轴坐标,第3列为x轴速度分量,第4列为y轴速度分量  Q# {5 O7 @$ y4 n( x8 P' L5 p
%5列为个体最优位置的x轴坐标,第6列为个体最优位置的y轴坐标! }$ h$ b! L; `
%7列为个体最优适值,第8列为当前个体适应值, E, n2 n) N4 B: t
& O8 r/ o- T& r* x( g/ Y3 o# Z
for i=1:popsize# d5 c  I1 y0 ]* A
pop(i,1)=4*rand()-2; %
初始化种群中的粒子位置,值为-2—2,步长为其速度8 Z# S$ |4 ]; j. h' c
pop(i,2)=4*rand()-2; %初始化种群中的粒子位置,值为-2—2,步长为其速度9 i; M- h8 f, [0 `" u) e
pop(i,5)=pop(i,1); %初始状态下个体最优值等于初始位置
- f* E5 r5 q( M1 e! lpop(i,6)=pop(i,2); %初始状态下个体最优值等于初始位置5 c0 A. q3 X/ B8 _9 y0 `
pop(i,3)=rand()*0.02-0.01; %初始化种群微粒速度,值为-0.01—0.01,间隔为0.0001
# R8 K; \; P$ Qpop(i,4)=rand()*0.02-0.01; %初始化种群微粒速度,值为-0.01—0.01,间隔为0.0001
# b1 [8 _6 w5 gpop(i,7)=inf;
- {9 Y) m5 a. n+ q2 Opop(i,8)=inf;
$ i7 B3 y* L% y! \8 P; p& uend
+ n2 ]* Y& ~& p( m4 R' n8 v, X3 A  E: k- Z% V3 m
c1=2;
! [5 i- p) L9 k1 P$ vc2=2;
+ x  {7 q& G: n; K# W0 d0 {x_min=-2;
0 H7 E( i$ u9 u3 u, xy_min=-2;8 c+ j) f5 g: y
x_max=2;' p$ A5 f0 `; f6 K  \- h
y_max=2;
% v7 h* u# u' ~2 h* K5 X) }
& H) f- P# \1 V0 q3 C# [& Igbest_x=pop(1,1); %
全局最优初始值为种群第一个粒子的位置
. T6 B& ~% M# R; }! B3 b4 C- ugbest_y=pop(1,2);* Y0 ?! w4 v6 }8 d) L" ^3 p: W
: L  W: \" A3 I' A) y/ C8 C
%
适值计算
! A: f" `, O% J4 `2 Y$ p5 F% 测试函数为f(x,y)=100(x^2-y)^2+(1-x)^2, -2.048<x,y<2.048
8 _0 P& g$ u5 @, @2 L6 v- h. l8 m3 e2 J3 o
%计算适应值并赋值. u) p8 _  c8 m/ L. u# X( Z
for i=1:popsize
: G/ i$ A! m# R  Cpop(i,8)=100*(pop(i,1)^2-pop(i,2))^2+(1-pop(i,1))^2;
) R% C8 V& v: n- I/ F  [% ~% Fif pop(i,7)>pop(i,8) %
若当前适应值优于个体最优值,则进行个体最优信息的更新& ^) X: f8 F% V8 L) V8 d1 p6 O: f
pop(i,7)=pop(i,8); %适值更新
# |3 `5 B6 @: `7 \7 `4 E5 Ipop(i,5:6)=pop(i,1:2); %位置坐标更新2 N& ^: q. `  a/ @* {
end
6 q% Y. t5 |$ I, o( g. y. {end
$ V5 t/ a  H  `1 L- {7 N8 k7 C) L8 ]* Y" M8 h: f5 `( Q* R( v0 ?' Q
%
计算完适应值后寻找当前全局最优位置并记录其坐标* z+ l; k% j& s2 u9 K; b" S, u
if best_fitness>min(pop(:,7))
# z, M3 f! N" M/ w; vbest_fitness=min(pop(:,7)); %
全局最优值4 T& f. ?' w+ ~
gbest_x=pop(find(pop(:,7)==min(pop(:,7))),1); %全局最优粒子的位置
1 s2 ~( J0 O! g# K, V/ m

0 u( r# U/ G3 Y/ p% L1 lgbest_y=pop(find(pop(:,7)==min(pop(:,7))),2);9 f9 x6 A, _9 G  r& ]/ O
end  ]4 X" J7 H2 `2 n: T1 s8 H* W
- B1 `# t& w) O' c; X- N0 {
best_in_history(exetime)=best_fitness; %
记录当前全局最优
/ |( ?* l2 e: V5 j4 r, p! M) k$ r0 h* d, r0 q5 l, X
%实时输出结果
" S' A4 S4 u4 m& S" x
1 a- j7 }, T3 l3 h# |# k%输出当前种群中粒子位置$ R9 F9 g: A- {3 v, h$ u! S& Q# w
subplot(1,2,1);3 O7 X6 d" i3 l( F2 t
for i=1:popsize
0 W7 c0 F5 f" G$ [) f$ w5 X# Yplot(pop(i,1),pop(i,2),'b*');5 N8 j2 }4 W5 G5 i4 k
hold on;
0 G" [" l) c6 q" r" \end
0 U8 p! s( V" n! Y# E6 `+ f2 T* x& z7 V3 o) h. K6 [7 e% u
plot(gbest_x,gbest_y,'r.','markersize',20);axis([-2,2,-2,2]);# T/ e; u& E2 h) E" X# A
hold off;2 z$ p: r5 `1 ^6 P! J
* s2 c! j4 m9 t
subplot(1,2,2);. I2 n. ~2 j( q  i2 V
axis([0,gen,-0.00005,0.00005]);# E7 n3 O8 l1 b

4 U" h% s* b% j# c9 }if exetime-1>0( o- k' w, N9 q2 k
line([exetime-1,exetime],[best_in_history(exetime-1),best_fitness]);hold on;+ E0 g% G& M: [
end
7 \: m* P; u% s" x
' Q8 B/ R8 Y9 v3 U; B2 i%
粒子群速度与位置更新$ R7 y9 {& d  [: S" f
% r7 L& y2 B  [
%更新粒子速度3 @! i/ ^7 m- _* y+ t# S
for i=1:popsize9 d! y: l. a9 Q% O! q" u! f
pop(i,3)=rand()*pop(i,3)+c1*rand()*(pop(i,5)-pop(i,1))+c2*rand()*(gbest_x-pop(i,1)); %
更新速度
1 W1 O) Y" ?( R  }2 U, }, lpop(i,4)=rand()*pop(i,4)+c1*rand()*(pop(i,6)-pop(i,2))+c2*rand()*(gbest_x-pop(i,2));
, D' o1 [) x$ S: rif abs(pop(i,3))>max_velocity
* o8 ^4 y; E* K& n9 A* M$ f$ lif pop(i,3)>0
6 _; S$ V$ v. w; z1 g( F6 m" ]* ^pop(i,3)=max_velocity;# D# D6 u7 w9 Y, Z
else/ `$ I1 z0 h8 f. z$ j
pop(i,3)=-max_velocity;4 o; x* O3 s4 U: N0 R7 {
end
4 l/ a0 e( H# u6 s7 N  ?8 bend
" _7 Q. ]9 v& C1 W/ Lif abs(pop(i,4))>max_velocity
7 C5 ^6 U+ S( K7 ]8 g2 Z4 l* oif pop(i,4)>07 y, C( C4 \2 ~9 n+ A' N2 R
pop(i,4)=max_velocity;) L" n! l7 @& P3 Z) f' ~
else
4 d1 D5 L# O+ M; m$ ?pop(i,4)=-max_velocity;; ~* B) H1 P) N( }  G0 k
end
( o  _) d7 D* q3 Q6 oend) T- n7 @: G( M) S5 F1 r) u7 j
end
& h3 S7 f% h" G0 Q' O( U1 Z0 c( F: w
! \0 l; C" b3 [- ]% C: |. {%
更新粒子位置
2 L' Z5 N$ C$ ifor i=1:popsize
' D+ y, Q; l  q9 U8 {pop(i,1)=pop(i,1)+pop(i,3);
  P  A' Y2 C. r' Vpop(i,2)=pop(i,2)+pop(i,4);7 G9 k$ a4 E7 k9 o) ~
end
9 \+ v' v, ]6 B5 k" r8 U
& H% i! F( i. L: S1 x

# G; F. E; P/ Q, t+ \( O# r+ N 1 u: L' X( }/ e6 ]& c
! v2 K3 q% ], Q" T

: {6 v. p; Q5 z% j- d# f# C, | ! L9 s* ?' g2 \" S

/ P6 R7 C5 p% B* q0 k6 |9 _ ; V" l) W# A+ x  `4 T

0 o2 U; S" e, @2 p 5 p4 i* X. {( S+ _! V; h" Z
! Z% R1 J- J- ^1 H# u- q) j
3 V3 N4 ?+ ]3 w/ N7 h  N

& b0 t3 T' A) V) E  U2 J) q& p( S
! K$ r$ l: f4 r+ z
6 G8 `4 M3 I- M. `1 L, K6 y
( z0 S- E/ f2 T0 L( I( ^
2 A; p' Q$ r9 N) F( {. ^0 w% A SIMPLE IMPLEMENTATION OF THE' S: C- \6 f/ M7 M1 P
% Particle Swarm Optimization IN MATLAB
  z$ p0 N; g# X- M' l' |% Pfunction [xmin, fxmin, iter] = PSO()8 y; h1 D0 P3 u0 R6 V6 Q
% Initializing variables
9 i  C6 p+ n3 X( Usuccess = 0;                    % Success flag
/ t( I# j* h% R! }PopSize = 30;                   % Size of the swarm/ Z7 M% j9 y' K
MaxIt = 100;                   % Maximum number of iterations
- ?) R6 ]8 {" H5 o; titer = 0;                       % Iterations’counter
) A/ d! h$ [6 s2 p0 k7 |0 W$ Bfevals = 0;                     % Function evaluations’ counter1 e- `$ |; E1 E3 w& ?& s* |
c1 = 2;                       % PSO parameter C
1( i1 p9 V8 d( A  r# L
c2 = 2;                       % PSO parameter C26 `* Z& Y- d: n; _
w = 0.6;                       % inertia weight9 A+ R, Y7 i) d1 v" q( h/ j
                  % Objective Function
/ T8 P, p% ?! `1 t1 _; xf = ^DeJong^;
8 q+ m6 j6 P3 o6 I' Xdim = 10;                        % Dimension of the problem+ F9 v0 o2 w2 o- i: {/ V
upbnd = 10;                      % Upper bound for init. of the swarm
! }, {3 U. P' O  Zlwbnd = -5;                     % Lower bound for init. of the swarm6 t1 W3 s3 Z8 N- R4 P
GM = 0;                         % Global minimum (used in the stopping criterion)  h4 ~3 t9 P; t# R
ErrGoal = 0.0001;                % Desired accuracy* W7 ?" V4 o: U7 w, [
: v' ?0 b2 n4 i' Y5 a& r
% Initializing swarm and velocities$ {5 |- o6 B) X* a# `
popul = rand(dim, PopSize)*(upbnd-lwbnd) + lwbnd;! b2 r0 e: ]. o& }8 ]: S- o$ s
vel = rand(dim, PopSize);
) L( C! z* i3 K/ G$ @' \( e3 ^
- a  c; w, {9 d+ C$ Sfor i = 1opSize,
' Y/ N  W) z  N    fpopul(i) = feval(f, popul(:,i));
# b( N/ j% u! J( q! e) H9 v  W    fevals = fevals + 1;
+ Q; i$ E2 ~' \% s' m0 ~# Z: Z, ^9 Mend
; h' V4 [9 p6 N1 m1 e/ U  m! Z- f7 w  k9 X
bestpos = popul;
4 q$ c: p- L- @' `! Hfbestpos = fpopul;' C1 N# X, B( @, M, e5 b
% Finding best particle in initial population) w5 q  e- D: k& p& a/ d0 b
[fbestpart,g] = min(fpopul);. i; n( W5 @$ v/ W
lastbpf = fbestpart;- L% Y/ H2 p/ H6 f3 c4 H- Z

" C: L  q( W% T& z5 R* ewhile (success == 0) & (iter < MaxIt),   
% M" F' O6 `. h5 s; ]) x# m    iter = iter + 1;! j- V; D( a" J$ L( @' V! f- I
1 K1 C) e; `7 l% X2 @1 h( `
    % VELOCITY UPDATE
* n+ x" }7 j$ R    for i=1opSize,
3 Y, b  ]# q- T& q- G. k5 V        A(:,i) = bestpos(:,g);9 s$ b6 j0 w- P6 j  j, ~
    end
2 H5 k6 u7 c. M# l& B    R1 = rand(dim, PopSize);6 e+ M8 _1 U9 b# s- P- F3 `4 {
    R2 = rand(dim, PopSize);* C8 P6 R, j0 n1 c' g8 U  g
    vel = w*vel + c1*R1.*(bestpos-popul) + c2*R2.*(A-popul);0 ?8 C7 j' N7 N5 ?) i4 S4 d

- p, |( Q8 f4 P+ T" @    % SWARMUPDATE2 A' q4 V* o9 D
    popul = popul + vel;
) d! [% m  V% k4 d    % Evaluate the new swarm
% R6 A. x& N1 D, O9 b4 C    for i = 1opSize,0 u& J+ S* |7 I& r% r
        fpopul(i) = feval(f,popul(:, i));
" j4 C2 @; h, |0 a2 A        fevals = fevals + 1;. {& _+ h4 z1 a4 ?
    end  h" _8 V- c8 o; {) `! @
    % Updating the best position for each particle' w5 B$ Y  Y1 S- F7 ~5 C
    changeColumns = fpopul < fbestpos;( q! k, ~( D# E
    fbestpos = fbestpos.*( 1-changeColumns) + fpopul.*changeColumns;
7 x5 e4 b8 M, X0 n4 n! u. L. D    bestpos(:, find(changeColumns)) = popul(:, find(changeColumns));
, Q& `5 m& {0 d    % Updating index g" ^* I1 q9 F( N+ }: a9 V2 z
    [fbestpart, g] = min(fbestpos);- L0 {* l0 H) U. w. D+ f; O
    currentTime = etime(clock,startTime);7 c. g" _* W- t  m5 e0 S& o
    % Checking stopping criterion/ @, }( j# B. O: k# C3 d* W
    if abs(fbestpart-GM) <= ErrGoal% l( p9 G4 [. n0 ^# Q0 C+ R0 C
        success = 1;
' g8 M3 O4 g7 k- x" @# Q5 W    else
' ~0 b& z, ]. s$ n7 n$ [        lastbpf = fbestpart;
/ ~  D8 g: h7 U, M* n5 U    end$ b: u, w0 U3 V1 \

4 [$ @  |0 i/ k! N# v- `5 u" X: vend
$ \( L6 R% }* S$ T. A, I& \( F1 ~
* ~$ j4 _5 D- d7 a3 q% Output arguments
' c$ x9 J$ }) p: n! R8 W  mxmin = popul(:,g);
! e) }4 a- Z0 j/ Y% u7 r0 }fxmin = fbestpos(g);
3 A* I  M! r3 b" E- k6 I$ X
! e& G9 M2 A1 B4 n5 x- W7 \% H; Ufprintf(^ The best vector is : \n^);! i# m# z$ @. i- q. n
fprintf(^---  %g  ^,xmin);
+ I8 J$ Y, w% L5 ?9 d3 l: lfprintf(^\n^);
* H8 b+ N% s# Z+ `  s: {6 H7 t%==========================================
: Z; N6 `1 z9 R1 pfunction DeJong=DeJong(x)% M& q4 t; {! L+ ]( N6 B
DeJong = sum(x.^2);
zan
转播转播0 分享淘帖0 分享分享0 收藏收藏0 支持支持0 反对反对0 微信微信
316855894 实名认证       

6

主题

4

听众

257

积分

升级  78.5%

  • TA的每日心情

    2011-10-24 15:44
  • 签到天数: 23 天

    [LV.4]偶尔看看III

    群组Matlab讨论组

    回复

    使用道具 举报

    0

    主题

    5

    听众

    756

    积分

    升级  39%

  • TA的每日心情
    奋斗
    2013-10-29 14:58
  • 签到天数: 18 天

    [LV.4]偶尔看看III

    自我介绍
    酷爱数学
    回复

    使用道具 举报

    0

    主题

    5

    听众

    756

    积分

    升级  39%

  • TA的每日心情
    奋斗
    2013-10-29 14:58
  • 签到天数: 18 天

    [LV.4]偶尔看看III

    自我介绍
    酷爱数学
    回复

    使用道具 举报

    您需要登录后才可以回帖 登录 | 注册地址

    qq
    收缩
    • 电话咨询

    • 04714969085
    fastpost

    关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

    手机版|Archiver| |繁體中文 手机客户端  

    蒙公网安备 15010502000194号

    Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

    GMT+8, 2025-12-5 05:11 , Processed in 0.646671 second(s), 66 queries .

    回顶部