QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 4121|回复: 0
打印 上一主题 下一主题

请问FindRoot外面套一个For循环的问题

[复制链接]
字体大小: 正常 放大

4

主题

10

听众

29

积分

升级  25.26%

  • TA的每日心情
    郁闷
    2015-6-6 15:06
  • 签到天数: 5 天

    [LV.2]偶尔看看I

    邮箱绑定达人 社区QQ达人

    跳转到指定楼层
    1#
    发表于 2015-6-2 12:57 |只看该作者 |倒序浏览
    |招呼Ta 关注Ta |邮箱已经成功绑定
    1. lamda = 1.55 10^-6;
      + U1 Q# ~. L+ f) U6 v
    2. k0 = 2*Pi/lamda;  F, N2 N0 o6 x
    3. n1 = 1.4677;(*纤芯折射率*)
      + f- t' g) V' F$ W
    4. n2 = 1.4628;(*包层折射率*)
      ' S! r$ f; r5 {, c1 v! {- @
    5. n3 = 0.469 + 9.32*I;(*银折射率*), Z\" l4 P: k! h
    6. a1 = 4.1 10^-6;(*纤芯半径*)
      ; ^2 y! {2 S\" {3 L
    7. a2 = 62.5 10^-6;(*包层半径*)
      + [4 C. I7 E5 P; ^$ r0 a2 \9 h) m- r
    8. d = 40 10^-9;(*金属厚度*); r9 a6 p0 t: G, H
    9. a3 = a2 + d;
      ( U1 h$ S\" K9 D
    10. mu = Pi*4 10^-7;(*真空磁导率*)
      / l8 m) Y/ e6 W8 ]( I) u/ O. g: X1 |
    11. epsi0 = 8.85 10^-12;(*介电常数*)
      1 R9 H8 g5 O* C, p

    12.   z6 r( J+ W% ]# ^9 m  @7 u) O
    13. n4 = 1.330;
      . S; T. I8 t: h/ ?  D
    14. 8 P: C% v. s! L# c2 `% m
    15. neffcl = neffclre + neffclim*I;
        Q5 p6 v4 q& L+ C7 f
    16. + v4 G9 l% `) F. m5 ]: ]; z
    17. betacl = k0*neffcl;
      , M- ]. ^9 r\" ?\" g: W6 M
    18. omega = 2*Pi*299792458/lamda;
      & Z+ O& L0 i- S* w- p  @  ]4 s* W

    19. ! c\" B: h8 ?1 f* `: m5 w
    20. epsi1 = n1^2*epsi0;
      $ D/ m# d6 q) m: P
    21. epsi2 = n2^2*epsi0;. \$ B& V# A* H9 W; o0 V* T
    22. epsi3 = n3^2*epsi0;
      ; ?+ Y' e- }1 J( R- l; S
    23. epsi4 = n4^2*epsi0;
      4 F; c, w7 F# b: }( g0 A
    24. 6 G% x, E' G  M8 `5 ]
    25. u1 = k0*Sqrt[neffcl^2 - n1^2];
      0 P! ]' l' U. Q$ j' _! J- D
    26. u2 = k0*Sqrt[neffcl^2 - n2^2];
        f5 t\" w6 O( l7 y) F9 ?6 ]
    27. u3 = k0*Sqrt[neffcl^2 - n3^2];
      ' k2 R; x5 e3 G! I$ R5 d7 g
    28. w4 = k0*Sqrt[neffcl^2 - n4^2];\" P1 [6 N. L+ {5 c! z! X2 W7 e

    29. & W1 |$ t' ]' E# n7 m
    30. Iua111 = BesselI[1, u1*a1];
      6 W0 a0 [* q7 L; n$ ]
    31. Iua121 = BesselI[1, u2*a1];
      ; w0 c  X. }( F  a5 h, e
    32. Iua122 = BesselI[1, u2*a2];3 g# N& `/ z8 e4 ?
    33. Iua132 = BesselI[1, u3*a2];
      , h9 _1 v8 n. a. R& }) n8 c
    34. Iua133 = BesselI[1, u3*a3];6 q$ P4 q8 T/ l2 d. ?
    35. IIua111 = (BesselI[0, u1*a1] + BesselI [2, u1*a1])/2;
      , s+ \0 D1 ^8 G4 H( |+ }. e
    36. IIua121 = (BesselI [0, u2*a1] + BesselI [2, u2*a1])/2;\" \0 d$ @: P6 b  B4 W% c
    37. IIua122 = (BesselI[0, u2*a2] + BesselI[2, u2*a2])/2;
      # p8 U8 U$ Y- @! _+ h
    38. IIua132 = (BesselI[0, u3*a2] + BesselI[2, u3*a2])/2;
      \" `3 T1 R! w+ c0 }( n* f
    39. IIua133 = (BesselI[0, u3*a3] + BesselI[2, u3*a3])/2;
      & x\" s' p2 M\" Q, B% n9 i7 y

    40. . v' t7 g' Q& z4 y, g
    41. Kua121 = BesselK [1, u2*a1];
      $ c' Z! b2 M0 Y: Z% Z\" D2 f
    42. Kua122 = BesselK [1, u2*a2];\" }- P1 G! L. @5 `* y' s6 |
    43. Kua132 = BesselK [1, u3*a2];
      ) k% q+ _' D3 t
    44. Kua133 = BesselK [1, u3*a3];
        d$ L4 u8 _6 h0 `% x7 ]1 }
    45. Kwa143 = BesselK [1, w4*a3];
      ! E3 U+ [% _/ g
    46. KKua121 = -(BesselK [0, u2*a1] + BesselK [2, u2*a1])/2;+ P- R* T9 t7 {
    47. KKua122 = -(BesselK [0, u2*a2] + BesselK [2, u2*a2])/2;# T- r( Q& F' N1 R0 b
    48. KKua132 = -(BesselK [0, u3*a2] + BesselK [2, u3*a2])/2;
      \" ~' i\" |\" _; Q9 r& q* I
    49. KKua133 = -(BesselK [0, u3*a3] + BesselK [2, u3*a3])/2;
      0 n. Q6 u7 E' w2 E0 E
    50. KKwa143 = -(BesselK [0, w4*a3] + BesselK [2, w4*a3])/2;
      # e0 V; V) R\" O4 y1 |4 Q% n3 g7 m- _

    51. 2 j9 ]5 ]8 Q5 v  S! P0 e\" h* y9 H
    52. H1 = (betacl*Kwa143*
        z/ O& d, z: K& p. b' G
    53.       Kua133*(w4^2/u3^2 - 1)/omega/epsi4/u3/a3)*(u3/u2*IIua132*
      / a8 K1 x7 u: J\" a% {( F+ d4 {% t+ W
    54.        Kua122 - u3^2/u2^2*Iua132*KKua122) - (betacl*Kwa143*
      , f2 X& Q) x3 H9 _
    55.       Iua133*(w4^2/u3^2 - 1)/omega/epsi4/u3/a3)*(u3/u2*KKua132*7 ^  i( `# l' H, i
    56.        Kua122 - u3^2/u2^2*Kua132*KKua122) + (betacl*Iua132*
      9 E4 f\" T9 P& Q! a4 C
    57.       Kua122*(u3^2/u2^2 - 1)/omega/epsi3/u2/a2)*(w4/u3*KKwa143*$ M7 h) h. b! d* [# [
    58.        Kua133 - w4^2*epsi3/u3^2/epsi4*Kwa143*KKua133) - (betacl*5 [. |9 O- y/ G4 \( z; ^
    59.       Kua132*Kua122*(u3^2/u2^2 - 1)/omega/epsi3/u2/a2)*(w4/u3*KKwa143*
      . L- A/ E! d7 K3 Z. |& f7 |
    60.        Iua133 - w4^2*epsi3/u3^2/epsi4*Kwa143*IIua133);
      \" [4 Q( G1 c8 \/ P# S! \

    61. 7 E8 @5 g: L1 t6 Z+ V, s( W
    62. H2 = (betacl*Kwa143*% o7 T) D8 e* u2 d# o  ~% ^2 b% w
    63.       Kua133*(w4^2/u3^2 - 1)/omega/epsi4/u3/a3)*(u3/u2*IIua132*) j- D- t/ o, }9 W( w/ T
    64.        Iua122 - u3^2/u2^2*Iua132*IIua122) - (betacl*Kwa143*
      \" t1 X5 {( [1 ^$ `  C
    65.       Iua133*(w4^2/u3^2 - 1)/omega/epsi4/u3/a3)*(u3/u2*KKua132*& [2 _' q: ]. j% t3 A5 L& O
    66.        Iua122 - u3^2/u2^2*Kua132*IIua122) + (betacl*Iua132*
      . ~. p* g& l8 k; ?5 Q
    67.       Iua122*(u3^2/u2^2 - 1)/omega/epsi3/u2/a2)*(w4/u3*KKwa143*
      2 Z( p( S8 S' V+ ~3 v5 N
    68.        Kua133 - w4^2*epsi3/u3^2/epsi4*Kwa143*KKua133) - (betacl*
        R$ h/ ]( |3 ^% D
    69.       Kua132*Iua122*(u3^2/u2^2 - 1)/omega/epsi3/u2/a2)*(w4/u3*KKwa143*, E( C. Q6 ]. r. e5 L; A
    70.        Iua133 - w4^2*epsi3/u3^2/epsi4*Kwa143*IIua133);  ^% N3 L4 e. {0 T; R8 w  I
    71. $ c. A, j+ k: o. G2 t2 `- M
    72. H3 = (betacl*Iua132*Kua122*(u3^2/u2^2 - 1)/omega/mu/u2/a2)*(betacl*
      * P, x' Y9 {: Z& W, ?. I8 e2 @
    73.       Kwa143*Kua133*(w4^2/u3^2 - 1)/omega/epsi4/u3/a3) - (betacl*
      9 h8 h/ b0 u% h. q; u! h
    74.       Kua132*Kua122*(u3^2/u2^2 - 1)/omega/mu/u2/a2)*(betacl*Kwa143*
      - i8 {/ _+ n% r! E$ R
    75.       Iua133*(w4^2/u3^2 - 1)/omega/epsi4/u3/a3) + (u3/u2*IIua132*7 T: H* x) l: q, d3 a: C
    76.        Kua122 -
      5 K2 ^2 t, Q2 c  }! W3 P2 K
    77.       u3^2*epsi2/u2^2/epsi3*Iua132*KKua122)*(w4/u3*KKwa143*Kua133 - & F! V  e  M* Z: h
    78.       w4^2*epsi3/u3^2/epsi4*Kwa143*KKua133) - (u3/u2*KKua132*Kua122 - 0 ?1 q7 e: ?5 u  c  O' d
    79.       u3^2*epsi2/u2^2/epsi3*Kua132*KKua122)*(w4/u3*KKwa143*Iua133 - 4 _, B* {. A# L+ }
    80.       w4^2*epsi3/u3^2/epsi4*Kwa143*IIua133);
      6 ]/ F# k' N# O3 V: [( R; F

    81. ! G% M, ?7 M: H\" q( N9 }/ o/ _
    82. H4 = (betacl*Iua132*Iua122*(u3^2/u2^2 - 1)/omega/mu/u2/a2)*(betacl*4 X, p1 H, g& Z+ y
    83.       Kwa143*Kua133*(w4^2/u3^2 - 1)/omega/epsi4/u3/a3) - (betacl*! _# V0 ]$ `- g% E1 D7 K! r+ p
    84.       Kua132*Iua122*(u3^2/u2^2 - 1)/omega/mu/u2/a2)*(betacl*Kwa143*: k7 x# _- T. H9 H8 J: ~
    85.       Iua133*(w4^2/u3^2 - 1)/omega/epsi4/u3/a3) + (u3/u2*IIua132*
      % U( O' t6 o( _7 _; M4 C
    86.        Iua122 -
      ' d. ?( @8 t. c
    87.       u3^2*epsi2/u2^2/epsi3*Iua132*IIua122)*(w4/u3*KKwa143*Kua133 - ) v7 o5 |$ S# G' O  K# y, _8 P2 F' }
    88.       w4^2*epsi3/u3^2/epsi4*Kwa143*KKua133) - (u3/u2*KKua132*Iua122 -
      0 Y5 j! N- F. w; ~\" A
    89.       u3^2*epsi2/u2^2/epsi3*Kua132*IIua122)*(w4/u3*KKwa143*Iua133 -
      8 H  ]) s3 E9 N9 E7 U% A
    90.       w4^2*epsi3/u3^2/epsi4*Kwa143*IIua133);
      : A  |' |1 y) D5 P5 w
    91. 9 R& a3 a! S\" s
    92. M1 = (betacl*Iua132*Kua122*(u3^2/u2^2 - 1)/omega/epsi3/u2/a2)*(betacl*. m5 q, D; L, d% U: R0 i
    93.       Kwa143*Kua133*(w4^2/u3^2 - 1)/omega/mu/u3/a3) - (betacl*Kua132*
      ( S( @* p, s$ N3 t7 ?
    94.       Kua122*(u3^2/u2^2 - 1)/omega/epsi3/u2/a2)*(betacl*Kwa143*
      : i/ ~, u/ r9 v+ g1 [) O+ [+ O
    95.       Iua133*(w4^2/u3^2 - 1)/omega/mu/u3/a3) + (u3/u2*IIua132*Kua122 -
      - d: T7 {7 b& ?; W( b
    96.        u3^2/u2^2*Iua132*KKua122)*(w4/u3*KKwa143*Kua133 -   ?: t8 ]- y( H0 x% e% D9 k
    97.       w4^2/u3^2*Kwa143*KKua133) - (u3/u2*KKua132*Kua122 -
      1 Q1 t* a+ s/ Y9 a( j
    98.       u3^2/u2^2*Kua132*KKua122)*(w4/u3*KKwa143*Iua133 -
      7 ?  ?: n3 k: @8 @- n& a/ P! c
    99.       w4^2/u3^2*Kwa143*IIua133);
      8 M9 c. I) L4 o8 q
    100. - z, |% k6 L$ i# O) T# S
    101. M2 = (betacl*Iua132*Iua122*(u3^2/u2^2 - 1)/omega/epsi3/u2/a2)*(betacl*: M* m/ z1 [! `# G8 T
    102.       Kwa143*Kua133*(w4^2/u3^2 - 1)/omega/mu/u3/a3) - (betacl*Kua132*
      , p, c4 L4 L5 P7 ~
    103.       Iua122*(u3^2/u2^2 - 1)/omega/epsi3/u2/a2)*(betacl*Kwa143*
      , h) M, T: n( Y
    104.       Iua133*(w4^2/u3^2 - 1)/omega/mu/u3/a3) + (u3/u2*IIua132*Iua122 -
      0 I, M& _% q, C' o
    105.        u3^2/u2^2*Iua132*IIua122)*(w4/u3*KKwa143*Kua133 -
      ! }4 i5 g0 g! M! b6 d  H
    106.       w4^2/u3^2*Kwa143*KKua133) - (u3/u2*KKua132*Iua122 - : h- m* S$ J3 x7 K6 @4 h) @4 ^8 c
    107.       u3^2/u2^2*Kua132*IIua122)*(w4/u3*KKwa143*Iua133 - 9 d3 K! r+ Y! V( z! Z5 ~! u
    108.       w4^2/u3^2*Kwa143*IIua133);2 S$ j. b% b9 g, H0 q+ t; @7 u\" E# ]
    109. 8 I8 F: y% l0 \/ p% h
    110. M3 = (betacl*Kwa143*; ?. ~7 [: G1 C\" _. r$ u) M: Q8 T  q
    111.       Kua133*(w4^2/u3^2 - 1)/omega/mu/u3/a3)*(u3/u2*IIua132*Kua122 -
      6 j6 [' v; g: w, V1 R  ~4 v
    112.       u3^2*epsi2/u2^2/epsi3*Iua132*KKua122) - (betacl*Kwa143*  V. H- j/ |+ t1 q  F
    113.       Iua133*(w4^2/u3^2 - 1)/omega/mu/u3/a3)*(u3/u2*KKua132*Kua122 - # B# Q8 |/ b; W% `
    114.       u3^2*epsi2/u2^2/epsi3*Kua132*KKua122) + (betacl*Iua132*9 s9 \: m4 K, V( _
    115.       Kua122*(u3^2/u2^2 - 1)/omega/mu/u2/a2)*(w4/u3*KKwa143*Kua133 - , \& T8 o* X5 o3 g+ P, r
    116.       w4^2/u3^2*Kwa143*KKua133) - (betacl*Kua132*
      0 s8 C3 s0 Z! K
    117.       Kua122*(u3^2/u2^2 - 1)/omega/mu/u2/a2)*(w4/u3*KKwa143*Iua133 -
      2 n6 z) y  z$ a. [3 H+ v$ ]6 k3 R
    118.       w4^2/u3^2*Kwa143*IIua133);8 w' }2 m0 q4 L7 E' n0 O

    119. $ W+ O+ P. I\" Y8 x$ X: R
    120. M4 = (betacl*Kwa143*
      . J- P: [# I- T+ L4 l
    121.       Kua133*(w4^2/u3^2 - 1)/omega/mu/u3/a3)*(u3/u2*IIua132*Iua122 - # A7 s3 W( [\" w4 z8 h8 k0 _2 X
    122.       u3^2*epsi2/u2^2/epsi3*Iua132*IIua122) - (betacl*Kwa143*1 W# m* X( O  C+ w7 Z
    123.       Iua133*(w4^2/u3^2 - 1)/omega/mu/u3/a3)*(u3/u2*KKua132*Iua122 -
      $ S( s  P2 h. ~# y% Q# D
    124.       u3^2*epsi2/u2^2/epsi3*Kua132*IIua122) + (betacl*Iua132*; D1 s0 E# @! j
    125.       Kua122*(u3^2/u2^2 - 1)/omega/mu/u2/a2)*(w4/u3*KKwa143*Kua133 -
      0 E+ V: b\" R2 I, X' M8 s6 L' h4 O\" d
    126.       w4^2/u3^2*Kwa143*KKua133) - (betacl*Kua132*
      7 \# x# Y* z7 I. h. w
    127.       Iua122*(u3^2/u2^2 - 1)/omega/mu/u2/a2)*(w4/u3*KKwa143*Iua133 -
      % V: [/ T! k# w! Y! h. H, f/ A
    128.       w4^2/u3^2*Kwa143*IIua133);\" {1 D# u' T7 c9 t/ C

    129. \" y2 M9 [% H* P\" V9 ?. c
    130. R1 = u2^2/u1^2*Iua121*IIua111 - u2/u1*IIua121*Iua111;3 T; I- b2 p* Q
    131. T1 = u2^2/u1^2*Kua121*IIua111 - u2/u1*KKua121*Iua111;% w\" Y( p1 l' i2 p7 S+ S  z. A
    132. U1 = betacl*Iua121*Iua111*(u2^2/u1^2 - 1)/omega/epsi2/u1/a1;! T% M4 y9 g8 J& f
    133. V1 = betacl*Kua121*Iua111*(u2^2/u1^2 - 1)/omega/epsi2/u1/a1;$ }2 j& B4 q+ _  |+ Q1 b6 I5 B% d; |
    134. \" R/ t3 B% J8 [- x. ^& |5 I* _) F5 m1 }
    135. R2 = u2^2/u1^2*epsi1/epsi2*Iua121*IIua111 - u2/u1*IIua121*Iua111;/ n7 h% ?1 U5 f- p
    136. T2 = u2^2/u1^2*epsi1/epsi2*Kua121*IIua111 - u2/u1*KKua121*Iua111;, k( j( g9 i# G$ f% W7 H
    137. U2 = betacl*Iua121*Iua111*(u2^2/u1^2 - 1)/omega/mu/u1/a1;9 D6 ]' E: U$ F- o% J) W; l! @
    138. V2 = betacl*Kua121*Iua111*(u2^2/u1^2 - 1)/omega/mu/u1/a1;& N( P/ S6 |. g' l3 s& V
    139. 6 q9 X: o: ^+ u2 p0 h) X
    140. xicl1 = (-R1*H1 + T1*H2 + U1*H3 - V1*H4)/(R1*M1 - T1*M2 - U1*M3 + 4 q1 l/ C3 S' Q# _2 Y& O$ f
    141.      V1*M4);' A  Y$ N, H4 w# F. r9 V2 [& S
    142. xicl2 = (-R2*H3 + T2*H4 + U2*H1 - V2*H2)/(R2*M3 - T2*M4 - U2*M1 +
      0 V$ _1 a\" q$ _  r8 r
    143.      V2*M2);
      # L& g* |$ [# f\" o

    144. 1 D* a5 z/ w\" m1 U0 u: o4 f5 v+ Z
    145. x = xicl1 - xicl2;- D5 q2 E  j+ s1 q- Y* P* C7 a
    146. x1 = Re[x];
      / z+ _  ?9 X4 d. m! L
    147. x2 = Im[x];
      : p! \. y2 y& y0 _8 |. {) E

    148. 0 ~$ m# E5 k+ X9 D- V3 Z
    149. FindRoot[{x1,x2},{{neffclre,1.333},{neffclim,0.00001}}];; p7 ?7 |\" u/ t- F4 {4 m
    150. ]
      8 ?3 X8 ]4 C2 D

    151. 8 M' U1 G. |9 ?8 O* \7 _\" {2 ^1 x
    复制代码
    代码如上,结果是{neffclre -> 1.33017, neffclim -> 0.0000172055}7 \7 `: Y4 P* U1 J, C
    但我把FindRoot[{x1,x2},{{neffclre,1.333},{neffclim,0.00001}}];
    * g8 n4 l; d* k+ E换成
    # m# v, S9 l& j8 w/ KFor[i = 1, i < 133, i++, neffclbase = 1.330 + 0.001*i;/ E# c& l2 n8 {0 k
    FindRoot[{x1, x2}, {{neffclre, neffclbase}, {neffclim, 0.00001}}];* R# _* v" H; G) V; d3 B. M
    ]
    / y3 A; R) O; M" Y* Q  U就会出现: U5 x; Z: h1 \  U6 e- T1 c( m3 V) e
    FindRoot::lstol: 线搜索把步长降低到由 AccuracyGoal 和 PrecisionGoal 指定的容差范围内,但是无法找到 merit 函数的充足的降低. 您可能需要多于 MachinePrecision 位工作精度以满足这些容差.
    ' g7 n) }6 f: S: d; C2 I; K4 j+ @6 ^  w& U6 Q1 Z! A
    请问是怎么回事?" N3 x4 q" n, h, Y

    9 g5 {5 l% m8 f4 X
    zan
    转播转播0 分享淘帖0 分享分享0 收藏收藏0 支持支持0 反对反对0 微信微信
    您需要登录后才可以回帖 登录 | 注册地址

    qq
    收缩
    • 电话咨询

    • 04714969085
    fastpost

    关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

    手机版|Archiver| |繁體中文 手机客户端  

    蒙公网安备 15010502000194号

    Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

    GMT+8, 2025-10-1 02:02 , Processed in 0.484318 second(s), 49 queries .

    回顶部