- 在线时间
- 3 小时
- 最后登录
- 2015-6-6
- 注册时间
- 2015-6-1
- 听众数
- 10
- 收听数
- 0
- 能力
- 0 分
- 体力
- 86 点
- 威望
- 0 点
- 阅读权限
- 20
- 积分
- 29
- 相册
- 0
- 日志
- 0
- 记录
- 0
- 帖子
- 9
- 主题
- 4
- 精华
- 0
- 分享
- 0
- 好友
- 5
升级   25.26% TA的每日心情 | 郁闷 2015-6-6 15:06 |
---|
签到天数: 5 天 [LV.2]偶尔看看I
 |
- lamda = 1.55 10^-6;
+ U1 Q# ~. L+ f) U6 v - k0 = 2*Pi/lamda; F, N2 N0 o6 x
- n1 = 1.4677;(*纤芯折射率*)
+ f- t' g) V' F$ W - n2 = 1.4628;(*包层折射率*)
' S! r$ f; r5 {, c1 v! {- @ - n3 = 0.469 + 9.32*I;(*银折射率*), Z\" l4 P: k! h
- a1 = 4.1 10^-6;(*纤芯半径*)
; ^2 y! {2 S\" {3 L - a2 = 62.5 10^-6;(*包层半径*)
+ [4 C. I7 E5 P; ^$ r0 a2 \9 h) m- r - d = 40 10^-9;(*金属厚度*); r9 a6 p0 t: G, H
- a3 = a2 + d;
( U1 h$ S\" K9 D - mu = Pi*4 10^-7;(*真空磁导率*)
/ l8 m) Y/ e6 W8 ]( I) u/ O. g: X1 | - epsi0 = 8.85 10^-12;(*介电常数*)
1 R9 H8 g5 O* C, p
z6 r( J+ W% ]# ^9 m @7 u) O- n4 = 1.330;
. S; T. I8 t: h/ ? D - 8 P: C% v. s! L# c2 `% m
- neffcl = neffclre + neffclim*I;
Q5 p6 v4 q& L+ C7 f - + v4 G9 l% `) F. m5 ]: ]; z
- betacl = k0*neffcl;
, M- ]. ^9 r\" ?\" g: W6 M - omega = 2*Pi*299792458/lamda;
& Z+ O& L0 i- S* w- p @ ]4 s* W
! c\" B: h8 ?1 f* `: m5 w- epsi1 = n1^2*epsi0;
$ D/ m# d6 q) m: P - epsi2 = n2^2*epsi0;. \$ B& V# A* H9 W; o0 V* T
- epsi3 = n3^2*epsi0;
; ?+ Y' e- }1 J( R- l; S - epsi4 = n4^2*epsi0;
4 F; c, w7 F# b: }( g0 A - 6 G% x, E' G M8 `5 ]
- u1 = k0*Sqrt[neffcl^2 - n1^2];
0 P! ]' l' U. Q$ j' _! J- D - u2 = k0*Sqrt[neffcl^2 - n2^2];
f5 t\" w6 O( l7 y) F9 ?6 ] - u3 = k0*Sqrt[neffcl^2 - n3^2];
' k2 R; x5 e3 G! I$ R5 d7 g - w4 = k0*Sqrt[neffcl^2 - n4^2];\" P1 [6 N. L+ {5 c! z! X2 W7 e
& W1 |$ t' ]' E# n7 m- Iua111 = BesselI[1, u1*a1];
6 W0 a0 [* q7 L; n$ ] - Iua121 = BesselI[1, u2*a1];
; w0 c X. }( F a5 h, e - Iua122 = BesselI[1, u2*a2];3 g# N& `/ z8 e4 ?
- Iua132 = BesselI[1, u3*a2];
, h9 _1 v8 n. a. R& }) n8 c - Iua133 = BesselI[1, u3*a3];6 q$ P4 q8 T/ l2 d. ?
- IIua111 = (BesselI[0, u1*a1] + BesselI [2, u1*a1])/2;
, s+ \0 D1 ^8 G4 H( |+ }. e - IIua121 = (BesselI [0, u2*a1] + BesselI [2, u2*a1])/2;\" \0 d$ @: P6 b B4 W% c
- IIua122 = (BesselI[0, u2*a2] + BesselI[2, u2*a2])/2;
# p8 U8 U$ Y- @! _+ h - IIua132 = (BesselI[0, u3*a2] + BesselI[2, u3*a2])/2;
\" `3 T1 R! w+ c0 }( n* f - IIua133 = (BesselI[0, u3*a3] + BesselI[2, u3*a3])/2;
& x\" s' p2 M\" Q, B% n9 i7 y
. v' t7 g' Q& z4 y, g- Kua121 = BesselK [1, u2*a1];
$ c' Z! b2 M0 Y: Z% Z\" D2 f - Kua122 = BesselK [1, u2*a2];\" }- P1 G! L. @5 `* y' s6 |
- Kua132 = BesselK [1, u3*a2];
) k% q+ _' D3 t - Kua133 = BesselK [1, u3*a3];
d$ L4 u8 _6 h0 `% x7 ]1 } - Kwa143 = BesselK [1, w4*a3];
! E3 U+ [% _/ g - KKua121 = -(BesselK [0, u2*a1] + BesselK [2, u2*a1])/2;+ P- R* T9 t7 {
- KKua122 = -(BesselK [0, u2*a2] + BesselK [2, u2*a2])/2;# T- r( Q& F' N1 R0 b
- KKua132 = -(BesselK [0, u3*a2] + BesselK [2, u3*a2])/2;
\" ~' i\" |\" _; Q9 r& q* I - KKua133 = -(BesselK [0, u3*a3] + BesselK [2, u3*a3])/2;
0 n. Q6 u7 E' w2 E0 E - KKwa143 = -(BesselK [0, w4*a3] + BesselK [2, w4*a3])/2;
# e0 V; V) R\" O4 y1 |4 Q% n3 g7 m- _
2 j9 ]5 ]8 Q5 v S! P0 e\" h* y9 H- H1 = (betacl*Kwa143*
z/ O& d, z: K& p. b' G - Kua133*(w4^2/u3^2 - 1)/omega/epsi4/u3/a3)*(u3/u2*IIua132*
/ a8 K1 x7 u: J\" a% {( F+ d4 {% t+ W - Kua122 - u3^2/u2^2*Iua132*KKua122) - (betacl*Kwa143*
, f2 X& Q) x3 H9 _ - Iua133*(w4^2/u3^2 - 1)/omega/epsi4/u3/a3)*(u3/u2*KKua132*7 ^ i( `# l' H, i
- Kua122 - u3^2/u2^2*Kua132*KKua122) + (betacl*Iua132*
9 E4 f\" T9 P& Q! a4 C - Kua122*(u3^2/u2^2 - 1)/omega/epsi3/u2/a2)*(w4/u3*KKwa143*$ M7 h) h. b! d* [# [
- Kua133 - w4^2*epsi3/u3^2/epsi4*Kwa143*KKua133) - (betacl*5 [. |9 O- y/ G4 \( z; ^
- Kua132*Kua122*(u3^2/u2^2 - 1)/omega/epsi3/u2/a2)*(w4/u3*KKwa143*
. L- A/ E! d7 K3 Z. |& f7 | - Iua133 - w4^2*epsi3/u3^2/epsi4*Kwa143*IIua133);
\" [4 Q( G1 c8 \/ P# S! \
7 E8 @5 g: L1 t6 Z+ V, s( W- H2 = (betacl*Kwa143*% o7 T) D8 e* u2 d# o ~% ^2 b% w
- Kua133*(w4^2/u3^2 - 1)/omega/epsi4/u3/a3)*(u3/u2*IIua132*) j- D- t/ o, }9 W( w/ T
- Iua122 - u3^2/u2^2*Iua132*IIua122) - (betacl*Kwa143*
\" t1 X5 {( [1 ^$ ` C - Iua133*(w4^2/u3^2 - 1)/omega/epsi4/u3/a3)*(u3/u2*KKua132*& [2 _' q: ]. j% t3 A5 L& O
- Iua122 - u3^2/u2^2*Kua132*IIua122) + (betacl*Iua132*
. ~. p* g& l8 k; ?5 Q - Iua122*(u3^2/u2^2 - 1)/omega/epsi3/u2/a2)*(w4/u3*KKwa143*
2 Z( p( S8 S' V+ ~3 v5 N - Kua133 - w4^2*epsi3/u3^2/epsi4*Kwa143*KKua133) - (betacl*
R$ h/ ]( |3 ^% D - Kua132*Iua122*(u3^2/u2^2 - 1)/omega/epsi3/u2/a2)*(w4/u3*KKwa143*, E( C. Q6 ]. r. e5 L; A
- Iua133 - w4^2*epsi3/u3^2/epsi4*Kwa143*IIua133); ^% N3 L4 e. {0 T; R8 w I
- $ c. A, j+ k: o. G2 t2 `- M
- H3 = (betacl*Iua132*Kua122*(u3^2/u2^2 - 1)/omega/mu/u2/a2)*(betacl*
* P, x' Y9 {: Z& W, ?. I8 e2 @ - Kwa143*Kua133*(w4^2/u3^2 - 1)/omega/epsi4/u3/a3) - (betacl*
9 h8 h/ b0 u% h. q; u! h - Kua132*Kua122*(u3^2/u2^2 - 1)/omega/mu/u2/a2)*(betacl*Kwa143*
- i8 {/ _+ n% r! E$ R - Iua133*(w4^2/u3^2 - 1)/omega/epsi4/u3/a3) + (u3/u2*IIua132*7 T: H* x) l: q, d3 a: C
- Kua122 -
5 K2 ^2 t, Q2 c }! W3 P2 K - u3^2*epsi2/u2^2/epsi3*Iua132*KKua122)*(w4/u3*KKwa143*Kua133 - & F! V e M* Z: h
- w4^2*epsi3/u3^2/epsi4*Kwa143*KKua133) - (u3/u2*KKua132*Kua122 - 0 ?1 q7 e: ?5 u c O' d
- u3^2*epsi2/u2^2/epsi3*Kua132*KKua122)*(w4/u3*KKwa143*Iua133 - 4 _, B* {. A# L+ }
- w4^2*epsi3/u3^2/epsi4*Kwa143*IIua133);
6 ]/ F# k' N# O3 V: [( R; F
! G% M, ?7 M: H\" q( N9 }/ o/ _- H4 = (betacl*Iua132*Iua122*(u3^2/u2^2 - 1)/omega/mu/u2/a2)*(betacl*4 X, p1 H, g& Z+ y
- Kwa143*Kua133*(w4^2/u3^2 - 1)/omega/epsi4/u3/a3) - (betacl*! _# V0 ]$ `- g% E1 D7 K! r+ p
- Kua132*Iua122*(u3^2/u2^2 - 1)/omega/mu/u2/a2)*(betacl*Kwa143*: k7 x# _- T. H9 H8 J: ~
- Iua133*(w4^2/u3^2 - 1)/omega/epsi4/u3/a3) + (u3/u2*IIua132*
% U( O' t6 o( _7 _; M4 C - Iua122 -
' d. ?( @8 t. c - u3^2*epsi2/u2^2/epsi3*Iua132*IIua122)*(w4/u3*KKwa143*Kua133 - ) v7 o5 |$ S# G' O K# y, _8 P2 F' }
- w4^2*epsi3/u3^2/epsi4*Kwa143*KKua133) - (u3/u2*KKua132*Iua122 -
0 Y5 j! N- F. w; ~\" A - u3^2*epsi2/u2^2/epsi3*Kua132*IIua122)*(w4/u3*KKwa143*Iua133 -
8 H ]) s3 E9 N9 E7 U% A - w4^2*epsi3/u3^2/epsi4*Kwa143*IIua133);
: A |' |1 y) D5 P5 w - 9 R& a3 a! S\" s
- M1 = (betacl*Iua132*Kua122*(u3^2/u2^2 - 1)/omega/epsi3/u2/a2)*(betacl*. m5 q, D; L, d% U: R0 i
- Kwa143*Kua133*(w4^2/u3^2 - 1)/omega/mu/u3/a3) - (betacl*Kua132*
( S( @* p, s$ N3 t7 ? - Kua122*(u3^2/u2^2 - 1)/omega/epsi3/u2/a2)*(betacl*Kwa143*
: i/ ~, u/ r9 v+ g1 [) O+ [+ O - Iua133*(w4^2/u3^2 - 1)/omega/mu/u3/a3) + (u3/u2*IIua132*Kua122 -
- d: T7 {7 b& ?; W( b - u3^2/u2^2*Iua132*KKua122)*(w4/u3*KKwa143*Kua133 - ?: t8 ]- y( H0 x% e% D9 k
- w4^2/u3^2*Kwa143*KKua133) - (u3/u2*KKua132*Kua122 -
1 Q1 t* a+ s/ Y9 a( j - u3^2/u2^2*Kua132*KKua122)*(w4/u3*KKwa143*Iua133 -
7 ? ?: n3 k: @8 @- n& a/ P! c - w4^2/u3^2*Kwa143*IIua133);
8 M9 c. I) L4 o8 q - - z, |% k6 L$ i# O) T# S
- M2 = (betacl*Iua132*Iua122*(u3^2/u2^2 - 1)/omega/epsi3/u2/a2)*(betacl*: M* m/ z1 [! `# G8 T
- Kwa143*Kua133*(w4^2/u3^2 - 1)/omega/mu/u3/a3) - (betacl*Kua132*
, p, c4 L4 L5 P7 ~ - Iua122*(u3^2/u2^2 - 1)/omega/epsi3/u2/a2)*(betacl*Kwa143*
, h) M, T: n( Y - Iua133*(w4^2/u3^2 - 1)/omega/mu/u3/a3) + (u3/u2*IIua132*Iua122 -
0 I, M& _% q, C' o - u3^2/u2^2*Iua132*IIua122)*(w4/u3*KKwa143*Kua133 -
! }4 i5 g0 g! M! b6 d H - w4^2/u3^2*Kwa143*KKua133) - (u3/u2*KKua132*Iua122 - : h- m* S$ J3 x7 K6 @4 h) @4 ^8 c
- u3^2/u2^2*Kua132*IIua122)*(w4/u3*KKwa143*Iua133 - 9 d3 K! r+ Y! V( z! Z5 ~! u
- w4^2/u3^2*Kwa143*IIua133);2 S$ j. b% b9 g, H0 q+ t; @7 u\" E# ]
- 8 I8 F: y% l0 \/ p% h
- M3 = (betacl*Kwa143*; ?. ~7 [: G1 C\" _. r$ u) M: Q8 T q
- Kua133*(w4^2/u3^2 - 1)/omega/mu/u3/a3)*(u3/u2*IIua132*Kua122 -
6 j6 [' v; g: w, V1 R ~4 v - u3^2*epsi2/u2^2/epsi3*Iua132*KKua122) - (betacl*Kwa143* V. H- j/ |+ t1 q F
- Iua133*(w4^2/u3^2 - 1)/omega/mu/u3/a3)*(u3/u2*KKua132*Kua122 - # B# Q8 |/ b; W% `
- u3^2*epsi2/u2^2/epsi3*Kua132*KKua122) + (betacl*Iua132*9 s9 \: m4 K, V( _
- Kua122*(u3^2/u2^2 - 1)/omega/mu/u2/a2)*(w4/u3*KKwa143*Kua133 - , \& T8 o* X5 o3 g+ P, r
- w4^2/u3^2*Kwa143*KKua133) - (betacl*Kua132*
0 s8 C3 s0 Z! K - Kua122*(u3^2/u2^2 - 1)/omega/mu/u2/a2)*(w4/u3*KKwa143*Iua133 -
2 n6 z) y z$ a. [3 H+ v$ ]6 k3 R - w4^2/u3^2*Kwa143*IIua133);8 w' }2 m0 q4 L7 E' n0 O
$ W+ O+ P. I\" Y8 x$ X: R- M4 = (betacl*Kwa143*
. J- P: [# I- T+ L4 l - Kua133*(w4^2/u3^2 - 1)/omega/mu/u3/a3)*(u3/u2*IIua132*Iua122 - # A7 s3 W( [\" w4 z8 h8 k0 _2 X
- u3^2*epsi2/u2^2/epsi3*Iua132*IIua122) - (betacl*Kwa143*1 W# m* X( O C+ w7 Z
- Iua133*(w4^2/u3^2 - 1)/omega/mu/u3/a3)*(u3/u2*KKua132*Iua122 -
$ S( s P2 h. ~# y% Q# D - u3^2*epsi2/u2^2/epsi3*Kua132*IIua122) + (betacl*Iua132*; D1 s0 E# @! j
- Kua122*(u3^2/u2^2 - 1)/omega/mu/u2/a2)*(w4/u3*KKwa143*Kua133 -
0 E+ V: b\" R2 I, X' M8 s6 L' h4 O\" d - w4^2/u3^2*Kwa143*KKua133) - (betacl*Kua132*
7 \# x# Y* z7 I. h. w - Iua122*(u3^2/u2^2 - 1)/omega/mu/u2/a2)*(w4/u3*KKwa143*Iua133 -
% V: [/ T! k# w! Y! h. H, f/ A - w4^2/u3^2*Kwa143*IIua133);\" {1 D# u' T7 c9 t/ C
\" y2 M9 [% H* P\" V9 ?. c- R1 = u2^2/u1^2*Iua121*IIua111 - u2/u1*IIua121*Iua111;3 T; I- b2 p* Q
- T1 = u2^2/u1^2*Kua121*IIua111 - u2/u1*KKua121*Iua111;% w\" Y( p1 l' i2 p7 S+ S z. A
- U1 = betacl*Iua121*Iua111*(u2^2/u1^2 - 1)/omega/epsi2/u1/a1;! T% M4 y9 g8 J& f
- V1 = betacl*Kua121*Iua111*(u2^2/u1^2 - 1)/omega/epsi2/u1/a1;$ }2 j& B4 q+ _ |+ Q1 b6 I5 B% d; |
- \" R/ t3 B% J8 [- x. ^& |5 I* _) F5 m1 }
- R2 = u2^2/u1^2*epsi1/epsi2*Iua121*IIua111 - u2/u1*IIua121*Iua111;/ n7 h% ?1 U5 f- p
- T2 = u2^2/u1^2*epsi1/epsi2*Kua121*IIua111 - u2/u1*KKua121*Iua111;, k( j( g9 i# G$ f% W7 H
- U2 = betacl*Iua121*Iua111*(u2^2/u1^2 - 1)/omega/mu/u1/a1;9 D6 ]' E: U$ F- o% J) W; l! @
- V2 = betacl*Kua121*Iua111*(u2^2/u1^2 - 1)/omega/mu/u1/a1;& N( P/ S6 |. g' l3 s& V
- 6 q9 X: o: ^+ u2 p0 h) X
- xicl1 = (-R1*H1 + T1*H2 + U1*H3 - V1*H4)/(R1*M1 - T1*M2 - U1*M3 + 4 q1 l/ C3 S' Q# _2 Y& O$ f
- V1*M4);' A Y$ N, H4 w# F. r9 V2 [& S
- xicl2 = (-R2*H3 + T2*H4 + U2*H1 - V2*H2)/(R2*M3 - T2*M4 - U2*M1 +
0 V$ _1 a\" q$ _ r8 r - V2*M2);
# L& g* |$ [# f\" o
1 D* a5 z/ w\" m1 U0 u: o4 f5 v+ Z- x = xicl1 - xicl2;- D5 q2 E j+ s1 q- Y* P* C7 a
- x1 = Re[x];
/ z+ _ ?9 X4 d. m! L - x2 = Im[x];
: p! \. y2 y& y0 _8 |. {) E
0 ~$ m# E5 k+ X9 D- V3 Z- FindRoot[{x1,x2},{{neffclre,1.333},{neffclim,0.00001}}];; p7 ?7 |\" u/ t- F4 {4 m
- ]
8 ?3 X8 ]4 C2 D
8 M' U1 G. |9 ?8 O* \7 _\" {2 ^1 x
复制代码 代码如上,结果是{neffclre -> 1.33017, neffclim -> 0.0000172055}7 \7 `: Y4 P* U1 J, C
但我把FindRoot[{x1,x2},{{neffclre,1.333},{neffclim,0.00001}}];
* g8 n4 l; d* k+ E换成
# m# v, S9 l& j8 w/ KFor[i = 1, i < 133, i++, neffclbase = 1.330 + 0.001*i;/ E# c& l2 n8 {0 k
FindRoot[{x1, x2}, {{neffclre, neffclbase}, {neffclim, 0.00001}}];* R# _* v" H; G) V; d3 B. M
]
/ y3 A; R) O; M" Y* Q U就会出现: U5 x; Z: h1 \ U6 e- T1 c( m3 V) e
FindRoot::lstol: 线搜索把步长降低到由 AccuracyGoal 和 PrecisionGoal 指定的容差范围内,但是无法找到 merit 函数的充足的降低. 您可能需要多于 MachinePrecision 位工作精度以满足这些容差.
' g7 n) }6 f: S: d; C2 I; K4 j+ @6 ^ w& U6 Q1 Z! A
请问是怎么回事?" N3 x4 q" n, h, Y
9 g5 {5 l% m8 f4 X |
zan
|