QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 4054|回复: 0
打印 上一主题 下一主题

请问FindRoot外面套一个For循环的问题

[复制链接]
字体大小: 正常 放大

4

主题

10

听众

29

积分

升级  25.26%

  • TA的每日心情
    郁闷
    2015-6-6 15:06
  • 签到天数: 5 天

    [LV.2]偶尔看看I

    邮箱绑定达人 社区QQ达人

    跳转到指定楼层
    1#
    发表于 2015-6-2 12:57 |只看该作者 |倒序浏览
    |招呼Ta 关注Ta |邮箱已经成功绑定
    1. lamda = 1.55 10^-6;9 S- k- q: B1 ^1 R) [
    2. k0 = 2*Pi/lamda;
      8 i/ h$ W' |- [: }9 ~# L4 t( L
    3. n1 = 1.4677;(*纤芯折射率*)
      - p2 v0 V  ?4 T2 ?+ U! U+ j* |
    4. n2 = 1.4628;(*包层折射率*)
      9 O# ]( u/ @1 D9 a, i0 c8 t
    5. n3 = 0.469 + 9.32*I;(*银折射率*)
      1 @\" \: X- r; o# S5 V- \$ x' s
    6. a1 = 4.1 10^-6;(*纤芯半径*)
      6 f: ~/ T9 y\" j: Y1 s3 b! Q
    7. a2 = 62.5 10^-6;(*包层半径*)  o0 d. _3 s- s9 W8 W( F, \\" `
    8. d = 40 10^-9;(*金属厚度*)
      - `$ _4 ^2 W5 x, J) {
    9. a3 = a2 + d;
      * Q$ |' }# A) P5 H! ?) h9 s5 R
    10. mu = Pi*4 10^-7;(*真空磁导率*)! h: g2 h7 `5 x# G  Q0 g
    11. epsi0 = 8.85 10^-12;(*介电常数*)
      + |9 ?7 c\" V1 r: G8 B9 r9 y

    12. - d' a4 x& K( t  A8 Q; a. H3 p
    13. n4 = 1.330;
      ! d7 _8 q9 R# @$ o

    14. 0 t9 c9 T3 m% \! R6 `  O0 m
    15. neffcl = neffclre + neffclim*I;
      . T4 n* u9 T0 T* j4 p8 _
    16. & G. L1 m& n5 r6 }) P: n+ x2 r% I- |
    17. betacl = k0*neffcl;
      + }\" t% i  Y/ M5 p5 ?
    18. omega = 2*Pi*299792458/lamda;
      : H/ b* W7 h' m

    19. 0 w6 h6 ?( x6 a+ K! b! q  F+ d
    20. epsi1 = n1^2*epsi0;+ V! U# O' ^% ^
    21. epsi2 = n2^2*epsi0;
      ) ?, ]2 S: R9 ^; B- b5 t5 d
    22. epsi3 = n3^2*epsi0;# s+ l% G+ d8 i! ^3 G
    23. epsi4 = n4^2*epsi0;
      3 C, d! y\" J' x% {) n- j
    24.   w: [$ a: N2 `( l0 o4 [
    25. u1 = k0*Sqrt[neffcl^2 - n1^2];
      6 q% l\" S8 C8 c# u
    26. u2 = k0*Sqrt[neffcl^2 - n2^2];; F6 I* u7 r& n$ A+ d
    27. u3 = k0*Sqrt[neffcl^2 - n3^2];2 t; x# j/ w3 ?4 t
    28. w4 = k0*Sqrt[neffcl^2 - n4^2];5 V% @' `2 o- S3 h9 L* T

    29. 4 z0 W' Z/ e, L/ r8 d- u
    30. Iua111 = BesselI[1, u1*a1];4 L8 c8 c7 }- J! x0 q
    31. Iua121 = BesselI[1, u2*a1];) i  K  g, ~: l- y- E# ?& \0 s
    32. Iua122 = BesselI[1, u2*a2];( [. o' l9 O+ N3 i1 \: G6 b& g
    33. Iua132 = BesselI[1, u3*a2];9 M) @. r1 C. g5 m5 e) x; f
    34. Iua133 = BesselI[1, u3*a3];5 m* a5 v: `  w9 a8 A# K
    35. IIua111 = (BesselI[0, u1*a1] + BesselI [2, u1*a1])/2;0 o( Q5 d5 I' R
    36. IIua121 = (BesselI [0, u2*a1] + BesselI [2, u2*a1])/2;) P# m) ~4 L$ J6 |$ {5 A: W3 J1 [
    37. IIua122 = (BesselI[0, u2*a2] + BesselI[2, u2*a2])/2;
      0 ]7 A( d- T6 x3 S0 u
    38. IIua132 = (BesselI[0, u3*a2] + BesselI[2, u3*a2])/2;# @8 n' U/ J$ [) K
    39. IIua133 = (BesselI[0, u3*a3] + BesselI[2, u3*a3])/2;
      & `2 Q4 z+ j5 C- E
    40. 5 v6 p5 I9 H\" ?5 z9 M6 ?( @! L% Y0 I, y
    41. Kua121 = BesselK [1, u2*a1];
      \" {, b- M( d& O0 e2 Y/ E& O# X& V7 o
    42. Kua122 = BesselK [1, u2*a2];
      7 w2 \9 y& |( g2 ^; S% @3 o' }& @
    43. Kua132 = BesselK [1, u3*a2];3 t9 b0 v9 |+ \% t5 d
    44. Kua133 = BesselK [1, u3*a3];
      $ N0 ~- Y6 U* c
    45. Kwa143 = BesselK [1, w4*a3];
      * B; p) Q* X- D# n5 w
    46. KKua121 = -(BesselK [0, u2*a1] + BesselK [2, u2*a1])/2;
      & u& v  B, I8 u- w1 ]\" G
    47. KKua122 = -(BesselK [0, u2*a2] + BesselK [2, u2*a2])/2;
      ! ^1 F3 g: y9 ?6 H4 `
    48. KKua132 = -(BesselK [0, u3*a2] + BesselK [2, u3*a2])/2;/ T- q3 c; D& c
    49. KKua133 = -(BesselK [0, u3*a3] + BesselK [2, u3*a3])/2;
      ! U\" ^+ E6 K* L# }# c/ C* n, {
    50. KKwa143 = -(BesselK [0, w4*a3] + BesselK [2, w4*a3])/2;
      6 e! K# v: r+ I3 B
    51. 1 X- t+ y/ p, t4 P: v  a\" z; W
    52. H1 = (betacl*Kwa143*
      3 @& s0 S# E# F) z$ k2 _7 K2 Z
    53.       Kua133*(w4^2/u3^2 - 1)/omega/epsi4/u3/a3)*(u3/u2*IIua132*8 k6 I  s% {' X8 q5 R
    54.        Kua122 - u3^2/u2^2*Iua132*KKua122) - (betacl*Kwa143*  U& K2 O9 W! V8 X4 Z1 I1 `
    55.       Iua133*(w4^2/u3^2 - 1)/omega/epsi4/u3/a3)*(u3/u2*KKua132*# g. }& m& H8 \. B) B
    56.        Kua122 - u3^2/u2^2*Kua132*KKua122) + (betacl*Iua132*
      ' M& l9 C0 Y$ L& t& }: f
    57.       Kua122*(u3^2/u2^2 - 1)/omega/epsi3/u2/a2)*(w4/u3*KKwa143*\" P% ^# i/ Z4 K( F
    58.        Kua133 - w4^2*epsi3/u3^2/epsi4*Kwa143*KKua133) - (betacl*8 M0 r* P8 }0 ^( r* Q. y+ I\" g9 s4 e
    59.       Kua132*Kua122*(u3^2/u2^2 - 1)/omega/epsi3/u2/a2)*(w4/u3*KKwa143*: {1 H- ]& g) P+ A
    60.        Iua133 - w4^2*epsi3/u3^2/epsi4*Kwa143*IIua133);
      ; e1 `  l\" U5 H\" n. `- v. L1 G
    61.   f$ ?, d/ W% b: P7 _/ `
    62. H2 = (betacl*Kwa143*' y2 Z) U6 L1 u6 t& o8 Z9 C- Y# c
    63.       Kua133*(w4^2/u3^2 - 1)/omega/epsi4/u3/a3)*(u3/u2*IIua132*
      $ j2 `! R5 w7 e/ z. P# V  U
    64.        Iua122 - u3^2/u2^2*Iua132*IIua122) - (betacl*Kwa143*
      - ^3 Y8 f* v, b% q8 D6 L
    65.       Iua133*(w4^2/u3^2 - 1)/omega/epsi4/u3/a3)*(u3/u2*KKua132*
      ' p  p3 g: N6 X
    66.        Iua122 - u3^2/u2^2*Kua132*IIua122) + (betacl*Iua132*
      \" f: y5 `0 |( V* G
    67.       Iua122*(u3^2/u2^2 - 1)/omega/epsi3/u2/a2)*(w4/u3*KKwa143*/ f& U) L+ \5 J5 d
    68.        Kua133 - w4^2*epsi3/u3^2/epsi4*Kwa143*KKua133) - (betacl*
      * g2 ]; A  r  C* m- U& `) {
    69.       Kua132*Iua122*(u3^2/u2^2 - 1)/omega/epsi3/u2/a2)*(w4/u3*KKwa143*) i8 E4 u' {; T  p- O
    70.        Iua133 - w4^2*epsi3/u3^2/epsi4*Kwa143*IIua133);( W3 Q1 c; ^1 G  X- d- a

    71. 8 Q) g+ _& G. L; e; G: U4 d
    72. H3 = (betacl*Iua132*Kua122*(u3^2/u2^2 - 1)/omega/mu/u2/a2)*(betacl*
      ) B! Q; O) O/ B- j/ Y+ I
    73.       Kwa143*Kua133*(w4^2/u3^2 - 1)/omega/epsi4/u3/a3) - (betacl*
      7 J, W\" `+ q& l) k5 a* Q& ^\" S
    74.       Kua132*Kua122*(u3^2/u2^2 - 1)/omega/mu/u2/a2)*(betacl*Kwa143*
      2 x* I& y7 s5 j; o) N+ J2 }# [
    75.       Iua133*(w4^2/u3^2 - 1)/omega/epsi4/u3/a3) + (u3/u2*IIua132*
      ! |9 \\" _0 A; j- S0 g\" m
    76.        Kua122 - ; x$ G2 W/ {' @. F; D
    77.       u3^2*epsi2/u2^2/epsi3*Iua132*KKua122)*(w4/u3*KKwa143*Kua133 - 0 R, o+ [\" J& k\" s+ l
    78.       w4^2*epsi3/u3^2/epsi4*Kwa143*KKua133) - (u3/u2*KKua132*Kua122 -
      % ]2 O* ?0 s5 v+ \
    79.       u3^2*epsi2/u2^2/epsi3*Kua132*KKua122)*(w4/u3*KKwa143*Iua133 -
      ' D! N- h/ Q) j9 O3 I- O
    80.       w4^2*epsi3/u3^2/epsi4*Kwa143*IIua133);
      7 w6 k, h1 r2 z3 ]2 f, _8 _\" h: ^

    81. ! d4 V# o7 O0 u( ?
    82. H4 = (betacl*Iua132*Iua122*(u3^2/u2^2 - 1)/omega/mu/u2/a2)*(betacl*
      # ]5 B& h8 m) O9 c0 @& T
    83.       Kwa143*Kua133*(w4^2/u3^2 - 1)/omega/epsi4/u3/a3) - (betacl*
      ' c6 t' p4 ?9 A3 \
    84.       Kua132*Iua122*(u3^2/u2^2 - 1)/omega/mu/u2/a2)*(betacl*Kwa143*/ g! N2 ]8 ~9 ^\" h
    85.       Iua133*(w4^2/u3^2 - 1)/omega/epsi4/u3/a3) + (u3/u2*IIua132*
      \" r/ v0 g$ p6 t, a8 O
    86.        Iua122 -
      2 H. K. i/ }9 X2 E
    87.       u3^2*epsi2/u2^2/epsi3*Iua132*IIua122)*(w4/u3*KKwa143*Kua133 -
      2 C: G7 x& W1 f& ?) P( S
    88.       w4^2*epsi3/u3^2/epsi4*Kwa143*KKua133) - (u3/u2*KKua132*Iua122 -
      2 Q/ o  k# V\" H: Q6 E
    89.       u3^2*epsi2/u2^2/epsi3*Kua132*IIua122)*(w4/u3*KKwa143*Iua133 - 1 }% h+ n( b9 n4 f0 `
    90.       w4^2*epsi3/u3^2/epsi4*Kwa143*IIua133);7 g  l! ]: F/ w( V$ [+ G0 u7 o  J

    91. ! K% p, E2 \/ t+ C: Q4 ~
    92. M1 = (betacl*Iua132*Kua122*(u3^2/u2^2 - 1)/omega/epsi3/u2/a2)*(betacl*$ `, s8 q) Q+ u% Z
    93.       Kwa143*Kua133*(w4^2/u3^2 - 1)/omega/mu/u3/a3) - (betacl*Kua132*
      $ Z2 z. ^# H7 M6 w# q* x
    94.       Kua122*(u3^2/u2^2 - 1)/omega/epsi3/u2/a2)*(betacl*Kwa143*7 G7 Q% O( Y  h
    95.       Iua133*(w4^2/u3^2 - 1)/omega/mu/u3/a3) + (u3/u2*IIua132*Kua122 -6 P4 h& _4 P: j2 T$ M7 W- n' P
    96.        u3^2/u2^2*Iua132*KKua122)*(w4/u3*KKwa143*Kua133 - $ ^# o+ J/ v- K% N0 E
    97.       w4^2/u3^2*Kwa143*KKua133) - (u3/u2*KKua132*Kua122 -
      / _  k( u  {  v* p
    98.       u3^2/u2^2*Kua132*KKua122)*(w4/u3*KKwa143*Iua133 -
      \" t6 q% k  Z! j- T1 U# P
    99.       w4^2/u3^2*Kwa143*IIua133);6 X. X- z$ X; T3 R. C# b
    100. + K# t! k: z4 I\" a6 \  I
    101. M2 = (betacl*Iua132*Iua122*(u3^2/u2^2 - 1)/omega/epsi3/u2/a2)*(betacl*
      + Q$ T/ v9 I; W$ {2 [9 f4 z
    102.       Kwa143*Kua133*(w4^2/u3^2 - 1)/omega/mu/u3/a3) - (betacl*Kua132*
      0 S( \, O1 _- O) w
    103.       Iua122*(u3^2/u2^2 - 1)/omega/epsi3/u2/a2)*(betacl*Kwa143*
      - q, I, X. S6 R' w
    104.       Iua133*(w4^2/u3^2 - 1)/omega/mu/u3/a3) + (u3/u2*IIua132*Iua122 -  C! ]4 Y* J* D& v- N* c3 j
    105.        u3^2/u2^2*Iua132*IIua122)*(w4/u3*KKwa143*Kua133 -
      : f' U) _; W& V8 O- `$ ]
    106.       w4^2/u3^2*Kwa143*KKua133) - (u3/u2*KKua132*Iua122 - 5 I9 c& D. P- d- o6 P
    107.       u3^2/u2^2*Kua132*IIua122)*(w4/u3*KKwa143*Iua133 -
      / Q. Z0 R4 b# O/ c7 |
    108.       w4^2/u3^2*Kwa143*IIua133);
      1 \- Z/ K$ m8 M7 @0 I( r+ v, `
    109. ; v) n& [0 P; @& ]; D
    110. M3 = (betacl*Kwa143*: B* c, D4 _5 K! L, F1 a2 Q2 u
    111.       Kua133*(w4^2/u3^2 - 1)/omega/mu/u3/a3)*(u3/u2*IIua132*Kua122 -
      ) Y6 Q/ d# K8 \5 D# `- ^4 Y
    112.       u3^2*epsi2/u2^2/epsi3*Iua132*KKua122) - (betacl*Kwa143*# k; Z/ _. n$ ^# S7 F% h1 q
    113.       Iua133*(w4^2/u3^2 - 1)/omega/mu/u3/a3)*(u3/u2*KKua132*Kua122 -
      - \: Y8 ?: i& i0 F# {% b
    114.       u3^2*epsi2/u2^2/epsi3*Kua132*KKua122) + (betacl*Iua132*2 j: f+ {. J2 n8 a1 L) F
    115.       Kua122*(u3^2/u2^2 - 1)/omega/mu/u2/a2)*(w4/u3*KKwa143*Kua133 -
      1 m9 X' U6 w$ |$ p
    116.       w4^2/u3^2*Kwa143*KKua133) - (betacl*Kua132*9 k, `- ^6 X4 n
    117.       Kua122*(u3^2/u2^2 - 1)/omega/mu/u2/a2)*(w4/u3*KKwa143*Iua133 -
      : {3 F% H8 i# u% q8 z, r& K3 h
    118.       w4^2/u3^2*Kwa143*IIua133);2 e' w0 g. i% ?( \4 \) z

    119. ' w) g( F0 r( e+ b! B6 N  B3 `& \
    120. M4 = (betacl*Kwa143*5 Q9 N( {$ o  z$ A0 Y
    121.       Kua133*(w4^2/u3^2 - 1)/omega/mu/u3/a3)*(u3/u2*IIua132*Iua122 -
      ( S\" e: y; J$ J, f  e! F\" T' ]! O
    122.       u3^2*epsi2/u2^2/epsi3*Iua132*IIua122) - (betacl*Kwa143*
      ! ~6 W1 b5 \& D\" n# M/ z
    123.       Iua133*(w4^2/u3^2 - 1)/omega/mu/u3/a3)*(u3/u2*KKua132*Iua122 -
      5 v! ], l0 a* u
    124.       u3^2*epsi2/u2^2/epsi3*Kua132*IIua122) + (betacl*Iua132*
      ; ^+ ?7 y* }( K6 k. {
    125.       Kua122*(u3^2/u2^2 - 1)/omega/mu/u2/a2)*(w4/u3*KKwa143*Kua133 -
      , C) C0 W/ c0 K& U$ E  Y- s9 m  U
    126.       w4^2/u3^2*Kwa143*KKua133) - (betacl*Kua132*( w6 q% r5 |% l! _+ \
    127.       Iua122*(u3^2/u2^2 - 1)/omega/mu/u2/a2)*(w4/u3*KKwa143*Iua133 - 3 w9 Z( d\" g\" v8 }
    128.       w4^2/u3^2*Kwa143*IIua133);/ X6 k$ ?; V& b/ U8 O

    129. 5 r+ u+ ?: N7 |- Z9 b
    130. R1 = u2^2/u1^2*Iua121*IIua111 - u2/u1*IIua121*Iua111;
      * F# m) I+ _! Y# X
    131. T1 = u2^2/u1^2*Kua121*IIua111 - u2/u1*KKua121*Iua111;: I9 \9 g% j  e\" v5 ^, X
    132. U1 = betacl*Iua121*Iua111*(u2^2/u1^2 - 1)/omega/epsi2/u1/a1;
      4 X! s$ M  \; D4 y$ ]: ?* e7 r
    133. V1 = betacl*Kua121*Iua111*(u2^2/u1^2 - 1)/omega/epsi2/u1/a1;
      ( H( k/ s9 B4 `4 `1 }* ]* r& ?
    134. ! E1 L4 f% \$ [- _
    135. R2 = u2^2/u1^2*epsi1/epsi2*Iua121*IIua111 - u2/u1*IIua121*Iua111;; Q7 d1 x/ b* R; R) p- v/ B# u
    136. T2 = u2^2/u1^2*epsi1/epsi2*Kua121*IIua111 - u2/u1*KKua121*Iua111;% M8 P1 `/ n; y7 o
    137. U2 = betacl*Iua121*Iua111*(u2^2/u1^2 - 1)/omega/mu/u1/a1;: ]6 N  ^8 ?- w8 R* g% f
    138. V2 = betacl*Kua121*Iua111*(u2^2/u1^2 - 1)/omega/mu/u1/a1;( w/ Z/ [% `( J9 Y6 k, m4 C

    139. 1 I( m& G0 t8 O1 x2 \. J
    140. xicl1 = (-R1*H1 + T1*H2 + U1*H3 - V1*H4)/(R1*M1 - T1*M2 - U1*M3 +
      & e2 A7 B: d8 T! S# h
    141.      V1*M4);
      # h, a7 H# K0 }# Z  R9 o4 y' b
    142. xicl2 = (-R2*H3 + T2*H4 + U2*H1 - V2*H2)/(R2*M3 - T2*M4 - U2*M1 +
      / e, ?0 T\" x: z- x  _$ u
    143.      V2*M2);
      + Y3 F: [6 O# P
    144. \" @+ m4 I' i* O2 p: c
    145. x = xicl1 - xicl2;' Q8 i* m* N( w; X) ~/ t) _# m
    146. x1 = Re[x];
      , ?: P6 I5 `. i
    147. x2 = Im[x];# m/ h$ w/ K6 H# Y' |$ e\" {\" i$ F
    148. 4 C  m$ }9 s- h6 D2 d' Q
    149. FindRoot[{x1,x2},{{neffclre,1.333},{neffclim,0.00001}}];
      . a6 G* o$ t1 N: C- S/ m: G
    150. ]# w: n; Y: R- k% o. @( ^# P: ~
    151. 9 Q1 v) [) Y: h' E
    复制代码
    代码如上,结果是{neffclre -> 1.33017, neffclim -> 0.0000172055}" w0 ~  Q' d* ~7 h' \
    但我把FindRoot[{x1,x2},{{neffclre,1.333},{neffclim,0.00001}}];! H& g+ ]0 F/ i
    换成
    . j/ j$ A& G# m: {1 V7 ?For[i = 1, i < 133, i++, neffclbase = 1.330 + 0.001*i;2 Z1 I0 F4 F$ s4 t% g- d
    FindRoot[{x1, x2}, {{neffclre, neffclbase}, {neffclim, 0.00001}}];
    9 v3 E5 A# H8 J% T ]. p2 v5 x8 I, X9 o9 \+ Q
    就会出现6 B+ g$ m, V9 \3 J& n2 Y0 X
    FindRoot::lstol: 线搜索把步长降低到由 AccuracyGoal 和 PrecisionGoal 指定的容差范围内,但是无法找到 merit 函数的充足的降低. 您可能需要多于 MachinePrecision 位工作精度以满足这些容差.* b" e* p* R+ O$ o* h6 a% L8 r- G
    ; y, u: k9 z1 q( I# P* q/ Q
    请问是怎么回事?" x0 P7 p9 d+ P
    ) O  m3 v0 \( x( ~' O: X
    zan
    转播转播0 分享淘帖0 分享分享0 收藏收藏0 支持支持0 反对反对0 微信微信
    您需要登录后才可以回帖 登录 | 注册地址

    qq
    收缩
    • 电话咨询

    • 04714969085
    fastpost

    关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

    手机版|Archiver| |繁體中文 手机客户端  

    蒙公网安备 15010502000194号

    Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

    GMT+8, 2025-8-4 16:39 , Processed in 0.763483 second(s), 49 queries .

    回顶部