QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 4030|回复: 0
打印 上一主题 下一主题

请问FindRoot外面套一个For循环的问题

[复制链接]
字体大小: 正常 放大

4

主题

10

听众

29

积分

升级  25.26%

  • TA的每日心情
    郁闷
    2015-6-6 15:06
  • 签到天数: 5 天

    [LV.2]偶尔看看I

    邮箱绑定达人 社区QQ达人

    跳转到指定楼层
    1#
    发表于 2015-6-2 12:57 |只看该作者 |倒序浏览
    |招呼Ta 关注Ta |邮箱已经成功绑定
    1. lamda = 1.55 10^-6;2 v+ V; {1 @4 @
    2. k0 = 2*Pi/lamda;
      4 i( K! g! u. b0 O+ \2 U
    3. n1 = 1.4677;(*纤芯折射率*)5 _; K( k, z4 t+ @% ?
    4. n2 = 1.4628;(*包层折射率*)
      7 r+ r) T0 o  d1 _. ]5 [
    5. n3 = 0.469 + 9.32*I;(*银折射率*)3 o# v/ ~- K& F; e
    6. a1 = 4.1 10^-6;(*纤芯半径*); j6 t  G# `( ?  _7 J8 M
    7. a2 = 62.5 10^-6;(*包层半径*): k$ Q\" S+ O2 h6 H/ ^7 d; p
    8. d = 40 10^-9;(*金属厚度*)
      8 n9 [6 G: C# Z
    9. a3 = a2 + d;
      5 x! C! @& O% a
    10. mu = Pi*4 10^-7;(*真空磁导率*)) H\" s, b( l5 v: \) q6 A- X) @
    11. epsi0 = 8.85 10^-12;(*介电常数*)% z) a5 I) R8 X: w8 C2 |/ K
    12. ' x& ~9 q& |, t& e) G4 Y& X3 C* b
    13. n4 = 1.330;
      5 R+ R1 |8 I) D8 r  U5 P

    14. \" q; x3 z; @/ s3 W4 b, ]* Y( m
    15. neffcl = neffclre + neffclim*I;0 `8 Q. S' X! _3 U5 @/ ^3 ^

    16. , V0 E\" Y, k' Q2 W0 r! @
    17. betacl = k0*neffcl;  z6 _! a' }/ e1 W( R/ ?
    18. omega = 2*Pi*299792458/lamda;
      \" r# @1 O8 a, ]7 m\" e! d3 [

    19. $ s! o5 g3 W! T% e7 q( x) R
    20. epsi1 = n1^2*epsi0;5 f5 Z! a. w! Y& M( b0 C
    21. epsi2 = n2^2*epsi0;: P8 ~) ~5 Q/ N4 C& }
    22. epsi3 = n3^2*epsi0;4 a: M/ {0 o3 h8 a
    23. epsi4 = n4^2*epsi0;
      0 m! }7 p1 A, Q/ Z  {3 a& S

    24. ; ]3 Z% L, D% h# j/ c3 e
    25. u1 = k0*Sqrt[neffcl^2 - n1^2];
      + K. a4 S\" x\" s5 A9 M
    26. u2 = k0*Sqrt[neffcl^2 - n2^2];\" h6 v! b* ]' H4 O4 X
    27. u3 = k0*Sqrt[neffcl^2 - n3^2];
      ! H0 m! |3 S. i( g\" b$ B
    28. w4 = k0*Sqrt[neffcl^2 - n4^2];
      3 G4 I7 t0 E# r( ~, F
    29. # b, q2 x+ H/ E  ?2 N% F( U
    30. Iua111 = BesselI[1, u1*a1];, G# T( d& Q8 \4 R% n6 x! P% E
    31. Iua121 = BesselI[1, u2*a1];% w; `  e1 ^2 x$ D1 S\" b; S
    32. Iua122 = BesselI[1, u2*a2];
      ; f( ]4 @; \* V( A, b9 I
    33. Iua132 = BesselI[1, u3*a2];$ W+ i: x  x# X2 G
    34. Iua133 = BesselI[1, u3*a3];+ e8 p% J$ b; c' p
    35. IIua111 = (BesselI[0, u1*a1] + BesselI [2, u1*a1])/2;# V' [) \7 ^8 h% G' @6 Q! E$ @
    36. IIua121 = (BesselI [0, u2*a1] + BesselI [2, u2*a1])/2;. T0 m1 }) {; T2 w1 e% \, [+ Y% a
    37. IIua122 = (BesselI[0, u2*a2] + BesselI[2, u2*a2])/2;
      $ B2 h) S; B( b6 q+ G3 D
    38. IIua132 = (BesselI[0, u3*a2] + BesselI[2, u3*a2])/2;7 b, h$ z/ o\" [6 Y, q3 a
    39. IIua133 = (BesselI[0, u3*a3] + BesselI[2, u3*a3])/2;
      / N$ w% L, M8 }' w: A# H- _

    40. 3 O1 `! c1 a- W/ o; H' t
    41. Kua121 = BesselK [1, u2*a1];
      - d( m% T& G0 U0 B9 u  y* I
    42. Kua122 = BesselK [1, u2*a2];
      * w- O7 t, X\" }: h  J: j
    43. Kua132 = BesselK [1, u3*a2];
      ' \4 r; S' c& b4 W. ?3 ~: n
    44. Kua133 = BesselK [1, u3*a3];; L8 W5 @( W' }7 ~3 k# t\" S
    45. Kwa143 = BesselK [1, w4*a3];* t$ L6 v4 _; e) |
    46. KKua121 = -(BesselK [0, u2*a1] + BesselK [2, u2*a1])/2;7 Q8 i/ ?; w0 l\" u\" [7 V
    47. KKua122 = -(BesselK [0, u2*a2] + BesselK [2, u2*a2])/2;
      ' N& e( l/ z+ N3 ^* R( J
    48. KKua132 = -(BesselK [0, u3*a2] + BesselK [2, u3*a2])/2;( n& D, t( W4 D/ \+ |! n2 n
    49. KKua133 = -(BesselK [0, u3*a3] + BesselK [2, u3*a3])/2;
      $ y& A9 Q9 ]5 @
    50. KKwa143 = -(BesselK [0, w4*a3] + BesselK [2, w4*a3])/2;4 L2 F! Y7 [- _5 ]

    51. 8 d$ e+ Z5 t2 l6 t\" }2 @
    52. H1 = (betacl*Kwa143*$ g: s: T) L3 E& P
    53.       Kua133*(w4^2/u3^2 - 1)/omega/epsi4/u3/a3)*(u3/u2*IIua132*$ k6 g# K- `3 w3 M\" @
    54.        Kua122 - u3^2/u2^2*Iua132*KKua122) - (betacl*Kwa143*
      6 w& _/ O' N$ \9 p, n% P
    55.       Iua133*(w4^2/u3^2 - 1)/omega/epsi4/u3/a3)*(u3/u2*KKua132*  ]  `2 Q& Q  H
    56.        Kua122 - u3^2/u2^2*Kua132*KKua122) + (betacl*Iua132*( a+ }$ j, s& b8 V\" N
    57.       Kua122*(u3^2/u2^2 - 1)/omega/epsi3/u2/a2)*(w4/u3*KKwa143*
      # R7 j: U6 D& j/ \' M6 V( J
    58.        Kua133 - w4^2*epsi3/u3^2/epsi4*Kwa143*KKua133) - (betacl*8 C( L( U4 K8 a
    59.       Kua132*Kua122*(u3^2/u2^2 - 1)/omega/epsi3/u2/a2)*(w4/u3*KKwa143*; r' |( F- ~* j/ C' D2 N. D
    60.        Iua133 - w4^2*epsi3/u3^2/epsi4*Kwa143*IIua133);& S) O! y5 n& q+ v9 H+ O

    61. : A  v2 S6 E; r% \& F5 c
    62. H2 = (betacl*Kwa143*' f) P8 R# A/ ~
    63.       Kua133*(w4^2/u3^2 - 1)/omega/epsi4/u3/a3)*(u3/u2*IIua132*
      $ r9 F* ^\" y* b8 I& l' v
    64.        Iua122 - u3^2/u2^2*Iua132*IIua122) - (betacl*Kwa143*
      % |& d( D' P8 `8 o( \3 [
    65.       Iua133*(w4^2/u3^2 - 1)/omega/epsi4/u3/a3)*(u3/u2*KKua132*
      : [* t. ~) t9 p1 H4 G7 r: g( A
    66.        Iua122 - u3^2/u2^2*Kua132*IIua122) + (betacl*Iua132*/ ]1 h& q\" p# A0 ^$ V
    67.       Iua122*(u3^2/u2^2 - 1)/omega/epsi3/u2/a2)*(w4/u3*KKwa143*6 ^) [\" g# `. C' Y, E8 b4 D) Q
    68.        Kua133 - w4^2*epsi3/u3^2/epsi4*Kwa143*KKua133) - (betacl*
      * z2 S\" P7 O. ?' G$ A4 n( P2 _
    69.       Kua132*Iua122*(u3^2/u2^2 - 1)/omega/epsi3/u2/a2)*(w4/u3*KKwa143*
      & o; j! ?! S+ R$ L8 z& _0 x
    70.        Iua133 - w4^2*epsi3/u3^2/epsi4*Kwa143*IIua133);
      * R; |3 O- O4 S
    71. ' [# U6 V\" K\" A1 a' q
    72. H3 = (betacl*Iua132*Kua122*(u3^2/u2^2 - 1)/omega/mu/u2/a2)*(betacl*: q3 u( X$ a4 O! c
    73.       Kwa143*Kua133*(w4^2/u3^2 - 1)/omega/epsi4/u3/a3) - (betacl*% d, s/ `& k+ j1 W
    74.       Kua132*Kua122*(u3^2/u2^2 - 1)/omega/mu/u2/a2)*(betacl*Kwa143*5 M$ s/ j# U7 W. |, U& t
    75.       Iua133*(w4^2/u3^2 - 1)/omega/epsi4/u3/a3) + (u3/u2*IIua132*3 o# z: ]3 }: A2 }- z  Y! E
    76.        Kua122 - * ~6 p/ \! Y5 N& l
    77.       u3^2*epsi2/u2^2/epsi3*Iua132*KKua122)*(w4/u3*KKwa143*Kua133 - ! D2 ?\" A) O0 q4 O% T% R; Z
    78.       w4^2*epsi3/u3^2/epsi4*Kwa143*KKua133) - (u3/u2*KKua132*Kua122 - 0 a0 [* X7 G: v* V$ W3 H
    79.       u3^2*epsi2/u2^2/epsi3*Kua132*KKua122)*(w4/u3*KKwa143*Iua133 - 6 _# b; l9 O. \) d4 R% o* _
    80.       w4^2*epsi3/u3^2/epsi4*Kwa143*IIua133);
      ; \' s& f5 W3 H1 D5 b
    81. 3 t/ {$ W  }- y- p
    82. H4 = (betacl*Iua132*Iua122*(u3^2/u2^2 - 1)/omega/mu/u2/a2)*(betacl*- f  ?9 ]' I1 K0 i* ~\" T( \( K* ^
    83.       Kwa143*Kua133*(w4^2/u3^2 - 1)/omega/epsi4/u3/a3) - (betacl*4 V; m8 K  Z3 ^9 W
    84.       Kua132*Iua122*(u3^2/u2^2 - 1)/omega/mu/u2/a2)*(betacl*Kwa143*& A  c8 w' y% M* O\" L7 Q
    85.       Iua133*(w4^2/u3^2 - 1)/omega/epsi4/u3/a3) + (u3/u2*IIua132*
      * U$ f( B9 @/ S
    86.        Iua122 - $ U) _' u( F! H7 G
    87.       u3^2*epsi2/u2^2/epsi3*Iua132*IIua122)*(w4/u3*KKwa143*Kua133 - ; m2 D8 Y  K. O\" a( ~# I: Q
    88.       w4^2*epsi3/u3^2/epsi4*Kwa143*KKua133) - (u3/u2*KKua132*Iua122 -
      , D3 Z1 J- t) c) }) Y3 m# H
    89.       u3^2*epsi2/u2^2/epsi3*Kua132*IIua122)*(w4/u3*KKwa143*Iua133 - ' ?' ?1 H, _& w8 U0 d2 ~% B
    90.       w4^2*epsi3/u3^2/epsi4*Kwa143*IIua133);
      ) X' S' T/ c6 l7 u( I0 @5 S& j; y
    91. 7 q. r6 N, X9 p
    92. M1 = (betacl*Iua132*Kua122*(u3^2/u2^2 - 1)/omega/epsi3/u2/a2)*(betacl*
      $ A) ^; ^8 n/ T  z% E
    93.       Kwa143*Kua133*(w4^2/u3^2 - 1)/omega/mu/u3/a3) - (betacl*Kua132** a# L\" E7 i9 U* B\" V
    94.       Kua122*(u3^2/u2^2 - 1)/omega/epsi3/u2/a2)*(betacl*Kwa143*
      . ~; d8 }% k; A$ Z% V
    95.       Iua133*(w4^2/u3^2 - 1)/omega/mu/u3/a3) + (u3/u2*IIua132*Kua122 -
      2 {  @' r2 J. a( s) Z! Y
    96.        u3^2/u2^2*Iua132*KKua122)*(w4/u3*KKwa143*Kua133 - ! l9 ]  I9 I& c* C+ k0 I+ i7 N
    97.       w4^2/u3^2*Kwa143*KKua133) - (u3/u2*KKua132*Kua122 - % Z) g( w7 P- L, x1 g7 W
    98.       u3^2/u2^2*Kua132*KKua122)*(w4/u3*KKwa143*Iua133 - 5 d9 J; X\" k4 Y8 {) m' s
    99.       w4^2/u3^2*Kwa143*IIua133);
      ; q4 F/ R1 @7 u3 e2 I2 t& z9 Y$ }6 [

    100. 9 m( K\" t2 d9 l; _$ Y+ g' c  ^. i
    101. M2 = (betacl*Iua132*Iua122*(u3^2/u2^2 - 1)/omega/epsi3/u2/a2)*(betacl*0 O9 k6 x- m' S. ?
    102.       Kwa143*Kua133*(w4^2/u3^2 - 1)/omega/mu/u3/a3) - (betacl*Kua132*
      ! {1 N\" q; v/ J! O$ }/ B
    103.       Iua122*(u3^2/u2^2 - 1)/omega/epsi3/u2/a2)*(betacl*Kwa143*
      % E% a: ^3 M% O) E+ Y% {3 w; ?\" P
    104.       Iua133*(w4^2/u3^2 - 1)/omega/mu/u3/a3) + (u3/u2*IIua132*Iua122 -
      4 ^/ A6 K  }, p3 I7 R
    105.        u3^2/u2^2*Iua132*IIua122)*(w4/u3*KKwa143*Kua133 -
      2 k- J- b6 I9 H, i\" C
    106.       w4^2/u3^2*Kwa143*KKua133) - (u3/u2*KKua132*Iua122 -
      + p9 e2 F' V5 p
    107.       u3^2/u2^2*Kua132*IIua122)*(w4/u3*KKwa143*Iua133 -
      - O. _7 ~/ K; z7 h& d7 t
    108.       w4^2/u3^2*Kwa143*IIua133);
      & l# @; {7 m\" V# n3 v
    109. : e( _: v* c5 e* B5 t3 l5 d! l
    110. M3 = (betacl*Kwa143*
      3 @/ K' b0 F3 w5 ]) \9 `
    111.       Kua133*(w4^2/u3^2 - 1)/omega/mu/u3/a3)*(u3/u2*IIua132*Kua122 -
      & G+ J; d$ `* t: K& [& L& L7 E4 N; Z
    112.       u3^2*epsi2/u2^2/epsi3*Iua132*KKua122) - (betacl*Kwa143*
      3 A* J2 m7 L& t; o
    113.       Iua133*(w4^2/u3^2 - 1)/omega/mu/u3/a3)*(u3/u2*KKua132*Kua122 -
      . I) V: ]1 A3 \! M
    114.       u3^2*epsi2/u2^2/epsi3*Kua132*KKua122) + (betacl*Iua132*1 V# V$ I' z( X7 r6 `
    115.       Kua122*(u3^2/u2^2 - 1)/omega/mu/u2/a2)*(w4/u3*KKwa143*Kua133 -
      & q3 i) o5 l8 `
    116.       w4^2/u3^2*Kwa143*KKua133) - (betacl*Kua132*# j& m! V! F1 G, g. x6 I% k& V
    117.       Kua122*(u3^2/u2^2 - 1)/omega/mu/u2/a2)*(w4/u3*KKwa143*Iua133 -
      6 O3 M8 n8 O5 n+ r
    118.       w4^2/u3^2*Kwa143*IIua133);4 R1 J+ Q- a5 u, y

    119. 0 V2 m# e% ]& w+ [) g  T7 ~' X# P
    120. M4 = (betacl*Kwa143*8 u6 j. W. N' P$ W\" D, _
    121.       Kua133*(w4^2/u3^2 - 1)/omega/mu/u3/a3)*(u3/u2*IIua132*Iua122 - % j% k2 E6 x& Y+ X/ A0 j
    122.       u3^2*epsi2/u2^2/epsi3*Iua132*IIua122) - (betacl*Kwa143*  U5 s) k\" G; H' z. I
    123.       Iua133*(w4^2/u3^2 - 1)/omega/mu/u3/a3)*(u3/u2*KKua132*Iua122 -
      2 D: I+ D1 ^  e2 w1 }
    124.       u3^2*epsi2/u2^2/epsi3*Kua132*IIua122) + (betacl*Iua132*
      3 T4 s6 x% u8 ?0 A$ N
    125.       Kua122*(u3^2/u2^2 - 1)/omega/mu/u2/a2)*(w4/u3*KKwa143*Kua133 -
      # y( _: Q1 Q! S0 N6 w8 F
    126.       w4^2/u3^2*Kwa143*KKua133) - (betacl*Kua132*
        p4 T7 A' f; f1 e
    127.       Iua122*(u3^2/u2^2 - 1)/omega/mu/u2/a2)*(w4/u3*KKwa143*Iua133 -
      # O% d5 U  L1 K* D
    128.       w4^2/u3^2*Kwa143*IIua133);
        I; z7 \+ X8 p3 b\" p6 h* a; n

    129. 2 x: s2 J/ |6 v+ h% B
    130. R1 = u2^2/u1^2*Iua121*IIua111 - u2/u1*IIua121*Iua111;  D- m* }0 j\" Y# |
    131. T1 = u2^2/u1^2*Kua121*IIua111 - u2/u1*KKua121*Iua111;
      4 g! k+ I( g' u2 I
    132. U1 = betacl*Iua121*Iua111*(u2^2/u1^2 - 1)/omega/epsi2/u1/a1;
      $ X\" n+ e. N  d( T8 o2 n2 R\" G
    133. V1 = betacl*Kua121*Iua111*(u2^2/u1^2 - 1)/omega/epsi2/u1/a1;3 L' w, G5 z7 e7 c! Y* Q; d6 ~

    134. \" M7 w( o1 @; @. E( V1 C
    135. R2 = u2^2/u1^2*epsi1/epsi2*Iua121*IIua111 - u2/u1*IIua121*Iua111;
      & V: {7 W7 D; U2 r
    136. T2 = u2^2/u1^2*epsi1/epsi2*Kua121*IIua111 - u2/u1*KKua121*Iua111;+ D, N! i( c; R7 |) M+ x& `6 m
    137. U2 = betacl*Iua121*Iua111*(u2^2/u1^2 - 1)/omega/mu/u1/a1;6 C2 Z8 @5 z8 C  N& s
    138. V2 = betacl*Kua121*Iua111*(u2^2/u1^2 - 1)/omega/mu/u1/a1;
      6 i' t4 r9 l, ]+ V( M: d7 r2 u

    139. & ?: }: V' w\" x$ F* M. T8 j
    140. xicl1 = (-R1*H1 + T1*H2 + U1*H3 - V1*H4)/(R1*M1 - T1*M2 - U1*M3 + 3 D* X* k/ Y! v3 ]5 k/ L
    141.      V1*M4);- D+ z8 x& s( Y* b  c2 M
    142. xicl2 = (-R2*H3 + T2*H4 + U2*H1 - V2*H2)/(R2*M3 - T2*M4 - U2*M1 + 0 B) i\" {9 z( ]  o. x/ K. |0 i
    143.      V2*M2);
      1 I( F, i5 U! a( j* ?/ W

    144. 2 U* G3 O, T5 H, P( B% g( L* }
    145. x = xicl1 - xicl2;' o' e+ o* K0 }
    146. x1 = Re[x];
      % i& C5 H+ u& h' v
    147. x2 = Im[x];, d. l( ~( z2 d+ k: ?
    148. ! s' M( B7 ~  T, Z0 F! E& H) _
    149. FindRoot[{x1,x2},{{neffclre,1.333},{neffclim,0.00001}}];5 Q# P; |; C8 }- B9 O
    150. ]' t- Q\" t0 u1 Q# [8 o8 r# V/ C
    151. $ S' F3 L* D! O4 E\" T6 V
    复制代码
    代码如上,结果是{neffclre -> 1.33017, neffclim -> 0.0000172055}
    # g8 G3 ]1 [; o. L但我把FindRoot[{x1,x2},{{neffclre,1.333},{neffclim,0.00001}}];' N5 @: @* S' Y/ }  t
    换成
    . k7 n9 {3 q. ?+ d& |5 JFor[i = 1, i < 133, i++, neffclbase = 1.330 + 0.001*i;
    & P4 N$ y/ s0 Z% v7 i# X FindRoot[{x1, x2}, {{neffclre, neffclbase}, {neffclim, 0.00001}}];
    / q* p4 L% t# l' f$ o/ y) _ ]
    - V4 T% q% B' B9 A4 P% @# Y就会出现
    * w1 f8 U- W+ zFindRoot::lstol: 线搜索把步长降低到由 AccuracyGoal 和 PrecisionGoal 指定的容差范围内,但是无法找到 merit 函数的充足的降低. 您可能需要多于 MachinePrecision 位工作精度以满足这些容差.
    7 j2 ~" ~9 ~& R. n6 `1 J- f8 w; S6 E9 i9 ^
    请问是怎么回事?
    ; m9 p7 \  C; p( a7 H5 A+ @. j, p
    ( S% C1 ^0 M4 i
    zan
    转播转播0 分享淘帖0 分享分享0 收藏收藏0 支持支持0 反对反对0 微信微信
    您需要登录后才可以回帖 登录 | 注册地址

    qq
    收缩
    • 电话咨询

    • 04714969085
    fastpost

    关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

    手机版|Archiver| |繁體中文 手机客户端  

    蒙公网安备 15010502000194号

    Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

    GMT+8, 2025-7-20 20:53 , Processed in 0.453065 second(s), 49 queries .

    回顶部