- 在线时间
- 63 小时
- 最后登录
- 2019-5-3
- 注册时间
- 2004-5-10
- 听众数
- 442
- 收听数
- 0
- 能力
- -250 分
- 体力
- 10122 点
- 威望
- -12 点
- 阅读权限
- 150
- 积分
- -586
- 相册
- 6
- 日志
- 10
- 记录
- 10
- 帖子
- 2003
- 主题
- 1253
- 精华
- 36
- 分享
- 8
- 好友
- 1292

复兴中华数学头子
TA的每日心情 | 开心 2011-9-26 17:31 |
---|
签到天数: 3 天 [LV.2]偶尔看看I
- 自我介绍
- 数学中国网站(www.madio.cn)是目前中国最大的数学建模交流社区
 群组: 越狱吧 群组: 湖南工业大学数学建模同盟会 群组: 四川农业大学数学建模协会 群组: 重庆交通大学数学建模协会 群组: 中国矿业大学数学建模协会 |
考虑自愈的SARS的传播模型
9 Y4 @ m3 ^3 \: C4 n4 [5 k# T2 g0 H$ Q" D
李贝
* [: x2 S8 p; X7 W4 f* N& X5 H! |6 D& z/ r% }
本文根据对SARS传播的分析,把人群分为5类:易感类、潜伏期类、患病未被发现类、患病已被发现类和治愈及死亡组成的免疫类,并考虑自愈因素,提出了两个模型:微分方程模型和基于Small-world Network的模拟模型。对微分方程模型,以香港为例讨论了自愈的影响,在一定意义下说明自愈现象在SARS传播中是普遍存在的。模拟模型利用Small-World Network模拟现实中人们之间的接触;借鉴Sznajd模型观念传播的基本思想“考察区域内每个成员如何影响与其有联系的其他成员”,用影响类比传染,从患病者去传染与其有接触的健康人的角度,模拟SARS的传播过程;然后吸收元胞自动机模型同步更新的思想,最终建立了一个患病者传染邻居,且一个成员同时受所有邻居影响的基于Small-World Network的模拟模型。对此模型,我们讨论了一些主要参数及接种疫苗的影响,最后拟合北京数据,讨论了提前或推迟5天采取措施的影响。
8 v) I8 c8 k+ d- l* P( ]' p2 g' k& D- ^! n: I
考虑自愈的SARS的传播模型.pdf
(341.9 KB, 下载次数: 2412)
D4 o7 @! O6 c" A- U. _" b; A
1 P i8 q3 f7 ?8 l/ R+ }# y7 P
- G$ t; x( w4 ?SARS传播的数学原理及预测与控制 V) [( a6 u* E4 ~, m
; Y2 I% o: T7 b8 x: R* G1 u+ ~1 o邹宇庭 郑晓练... 3 `5 p: b3 p0 M6 z- n
$ b) r% h( I! @; K- b
众所周知,SARS对中国社会带来了重大的影响。我们以北京地区4月到6月有关SARS的数据为参考资料,就病毒的实际传播特征引入了电子线路中的负反馈的概念,建立了SARS传播的负反馈系统,并在分析该系统参数实际意义的情况下,建立时间序列的模型。该模型将传染率定义为时间的函数,以拟合数据和实际数据之间的总残差最小为目标,利用matlab中的fminseareh函数模拟得到最优的模型参数。该模型可以较好的预测SARS的发展趋势,且可以就此趋势提出如何控制SARS传播的措施。继而,本文通过模拟出在不同日期提前或滞后5天实施隔离政策所引起SARS发展趋势变化的曲线,分析了卫生部门实施隔离政策的日期对SARS发展趋势的影响。 在SARS对经济影响的这个问题上,本文适当选取医疗业具有代表性的17支股票,构造了医疗板块指数,以此测度医疗业的经济表现。在传统的CAPM模型中,我们引入了虚拟变量,利用OLS技术进行估计分析,检验出SARS这一事件对医药业的经济影响是正影响。该影响反映在医疗版指数的日收益上,但这个影响是由SARS引起的,会随着SARS的结束而结束。
4 u3 R ?4 a; S5 o; {* B+ N5 e0 g$ `
SARS传播的数学原理及预测与控制.pdf
(196.92 KB, 下载次数: 1778)
7 y L1 m- X1 C
0 ] J8 e, H! M5 x! s# n! {. v8 V9 d/ A
SARS传播的研究 % I: |- B w) Y' J5 @/ d
. l2 n7 i5 C# H( A. X) D9 h4 A
肖红江 吴彤...
3 S1 C& e& U j3 {+ e3 k7 R/ G+ F0 p$ z8 D- k9 l" n0 t7 \
本文结合附件一所给的模型,对它提出的半模拟循环计算的方法进行了检验,得出该模型的优点在于形式简单,模拟的精确度较高,K值的改变体现出了其合理性,同时指出了它的主要缺点在于过分依赖数据和不具有长远的预测性。对于问题2,我们提出了(1)微分差分方程组合模型(2)基于低通滤波理论的系统控制模型(3)基于神经网络的系统模型(4)基于分支过程(Branching Pro-ceSs)的Monte Carlo仿真模型四种具有不同核心思想的模型。在模型2中,通过解析求解我们得出了北京SARS持续期为99天及“控制时间越早越好”、“SARS传染病不可能周期性复发”等结论。对于问题3,我们受到经济学中“效用函数”的思想的启发,引入了三个不同的影响函数并提出了“旅游人次影响模型”。最终得出在SARS影响下北京市将少接待海外游客138.211万人次。最后,我们给出了发表到报刊上的短文。
2 N7 L d" |9 w/ Y& J- I' w& h. K* C5 @7 {* \
SARS传播的研究.pdf
(311.51 KB, 下载次数: 1577)
6 Z( r* ]. G) @
% L' I! I, B" S2 k/ n0 v
: X' W2 o& q, R U. [非典数学模型的建立与分析 % y1 M- u1 A6 o9 f9 C3 p
7 p. U/ S% W& B
王议锋 田一... 5 x# u. m0 U F5 A: ]9 e! Y
j3 x- ?) R: [
本文以2003年6月以前的有关数据为资料,在传统的SEIR传染病模型的基础上,对人群作了合理的分类,建立了控制前传播模型和控制后传播模型,通过合理估计、曲线拟合和概率平均的方法得到了各个参数。重点分析了控后模型,用龙格—库塔法求解了方程,并对北京、内蒙古、广东、香港四个SARS重点疫区的疫情作了具体的分析,最后评价了模型的合理性、实用性,提出了模型的改进方向和思路。5 _& q y3 P: p4 ]; T B5 Z/ ^
+ ~' s2 a. k. C2 i! G1 f
非典数学模型的建立与分析.pdf
(325.35 KB, 下载次数: 1483)
1 H1 K" T! B4 k' G+ ~* p: r" K
# D$ [* o' `& T ]+ p
SARS传播预测的数学模型 P9 n& T6 X0 V Y( j
% G# R9 f. h: \3 i+ n7 P8 g
周义仓 唐云
: M- c/ s) \- a% K5 f
4 g3 f" K, j) P0 w+ g3 JSARS的传播是2003年全国大学生数学建模竞赛的赛题之一,这是一个完全开放、国内外一直在探索的问题。同学们提交的论文中建立了许多模型,对SARS的传播和预测进行研究。本文对竞赛情况和需要探讨的问题进行了简单的总结。) {% W/ ^% ]4 m% v& R$ F
% v" Q9 A. {1 g- F
SARS传播预测的数学模型.pdf
(414.23 KB, 下载次数: 1968)
|
zan
|