QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 12666|回复: 1
打印 上一主题 下一主题

证明哥德巴赫猜想新方法

[复制链接]
字体大小: 正常 放大

8

主题

5

听众

54

积分

升级  51.58%

  • TA的每日心情
    郁闷
    2018-10-5 21:08
  • 签到天数: 4 天

    [LV.2]偶尔看看I

    跳转到指定楼层
    1#
    发表于 2018-10-3 21:38 |只看该作者 |倒序浏览
    |招呼Ta 关注Ta
    我们知道哈代与李特伍德的哥德巴赫猜想个数猜测公式如下:: s  ?( z$ D: E5 \" U2 G
    r(N)~2c∏[(p-2)/(p-1)]N/(lnN)^2    其中∏[(p-2)/(p-1)]中的p|N,√N≥p>2  c是拉曼纽扬系数
    * C# Y: Z# U) _' s如果p不整除N.则上式成为:% E9 Z# u3 x# C) V# l3 t7 v( `
    r(N)~2cN/(lnN)^2. h" N, ]) \; f
    根据梅滕斯定理,可以知道:9 e- d- ]: D+ e
    ∏(1-1/p)~2e^(-γ)/lnN    其中2≤p≤√N    e^(-γ)≈0.56146. i- w( G$ a! |7 V& \/ ]: Q# `
    因为素数定理:
    ' f% e; u) ?: o; I0 M' Aπ(N)~N/lnN ( _. A' y7 o# R6 `4 Z# U
    所以有:3 l: [: t" n4 Y; h. `" y% v
    π(N)~N∏(1-1/p)/2e^(-γ)      其中2≤p≤√N
    ! G* P5 l7 U  P/ v6 Q也就是说想用∏(1-1/p)表示素数的个数必须乘以1/2e^(-γ)才能得出正确的值
    , I+ S3 v1 q5 `4 G/ S同样如果用∏(1-2/p)表示哥德巴赫猜想的个数就需要乘以[1/2e^(-γ)]^2才能得出正确的值这是因为# i% H0 d2 M( N7 ^
    (1/2)∏(1-2/p)=(1/2)Π(1-1/p)(p-2)(p-1)=(1/2)Π(1-1/p)(1-1/p)[1-1/(p-1)^2]6 D; a" Z5 I3 f5 Y! E+ N( [
    =2Π(1/2)(1-1/p)(1/2)(1-1/p)[1-1/(p-1)^2]  其中2<p≤√N,% s+ K. m( s. V
    所以                                                            
    9 g) m' [$ X$ R5 r. z) W0 j" Pr(N)~( N/2)∏(1-2/p)[1/2e^(-γ)]^2=2cN∏[(1-1/p)^2][1/2e^(-γ)]^2=2cN/(lnN)^2  ( D* H) s2 j* X
    上面其中(1-2/p)里2<p≤√N  (1-1/p)里 2≤p≤√N
    6 }' Z; d0 N8 u7 S" I* g如果p|N,则
    2 m2 |- _! r( y" Jr(N)~2c∏[(p-2)/(p-1)]N/(lnN)^2
    4 T2 e" Y! d4 f5 R至此关于哈代与李特伍德的哥德巴赫猜想个数的猜测得以初步证明8 y# F4 @1 F  p/ R  [$ ]

    2 P, k8 l/ @4 s$ Y

    ; C; n  D: _0 y" R% |9 w* s, u; O! G3 u! ^

    点评

    13506769794  。  发表于 2021-8-12 20:01
    大傻8888888  r(N)~2c∏[(p-2)/(p-1)]N/(lnN)^2 其中∏[(p-2)/(p-1)]中的p|N,√N≥p>2 c是拉曼纽扬系数改为如下: r(N)~2c∏[(p-1)/(p-2)]N/(lnN)^2 其中∏[(p-1)/(p-2)]中的p|N,√N≥p>2 c是拉曼纽扬系数  发表于 2019-10-22 20:40
    大傻8888888  r(N)~2c∏[(p-2)/(p-1)]N/(lnN)^2 其中∏[(p-2)/(p-1)]中的p|N,√N≥p>2 c是拉曼纽扬系数改为如下: r(N)~2c∏[(p-1)/(p-2)]N/(lnN)^2 其中∏[(p-1)/(p-2)]中的p|N,√N≥p>2 c是拉曼纽扬系数  发表于 2019-10-22 20:39
    大傻8888888  r(N)~2c∏[(p-2)/(p-1)]N/(lnN)^2 其中∏[(p-2)/(p-1)]中的p|N,√N≥p>2 c是拉曼纽扬系数改为如下: r(N)~2c∏[(p-1)/(p-2)]N/(lnN)^2 其中∏[(p-1)/(p-2)]中的p|N,√N≥p>2 c是拉曼纽扬系数  发表于 2019-10-22 20:39
    大傻8888888  r(N)~2c∏[(p-2)/(p-1)]N/(lnN)^2 其中∏[(p-2)/(p-1)]中的p|N,√N≥p>2 c是拉曼纽扬系数改为如下: r(N)~2c∏[(p-1)/(p-2)]N/(lnN)^2 其中∏[(p-1)/(p-2)]中的p|N,√N≥p>2 c是拉曼纽扬系数  发表于 2019-10-22 20:39
    zan
    转播转播0 分享淘帖0 分享分享0 收藏收藏0 支持支持0 反对反对0 微信微信
    756967634        

    30

    主题

    1

    听众

    47

    积分

    升级  44.21%

  • TA的每日心情
    开心
    2021-3-30 14:40
  • 签到天数: 21 天

    [LV.4]偶尔看看III

    大傻大傻大大傻,傻得别人自愧傻。傻的东西人装傻,傻得别人都装傻。
    4 n* [7 P# R; Q/ r
    回复

    使用道具 举报

    您需要登录后才可以回帖 登录 | 注册地址

    qq
    收缩
    • 电话咨询

    • 04714969085
    fastpost

    关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

    手机版|Archiver| |繁體中文 手机客户端  

    蒙公网安备 15010502000194号

    Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

    GMT+8, 2025-8-1 09:51 , Processed in 0.508017 second(s), 56 queries .

    回顶部