QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 2695|回复: 0
打印 上一主题 下一主题

[个人总经验] 差分方程模型

[复制链接]
字体大小: 正常 放大
longde        

30

主题

8

听众

106

积分

  • TA的每日心情
    奋斗
    2014-12-7 07:58
  • 签到天数: 22 天

    [LV.4]偶尔看看III

    宣传员

    群组2014年网络挑战赛交流

    群组国赛讨论

    群组2014美赛讨论

    群组第三届数模基础实训

    跳转到指定楼层
    1#
    发表于 2015-8-17 22:52 |只看该作者 |倒序浏览
    |招呼Ta 关注Ta
    差分方程模型
    ! ?3 q% k' k: {8 R5 |6 y" s) F: B5 t( e" B4 {& I  O* l- n% t% |. ]( O" k
        将时间离散化后,就可以建立与微分方程相对应的差分方程模型。这章与第8章讨论的是确定性离散模型。实际上有些问题既可以用连续,又可以用离散,要看目的而定。离散的一个优势在于,便于计算机求解。8 y, K* V# P" X7 O  Y: Q  L* H+ n2 l  U' F& V# c0 t  s
    4 {8 ^1 }7 c" Z6 {* h9 `* q
    7.5 差分方程简介:介绍差分方程稳定性的知识,判别稳定的条件。本章要用到的知识。
    7 {) R& N1 {+ [& M" w  A% p0 I7.1 市场经济中的蛛网模型: i3 v0 J" t6 P9 i" P2 o: [* J' {. S. \9 C
        先用图形法建立市场经济的“蛛网模型”,给出趋于稳定的条件,再用差分方程建模,解释结果。本节开头的“问题前瞻、介绍”部分很经典,可作为建模论文写作的参考。, Q* R2 M% q* g% Z2 @! f" D
    2 p, h' ]) \0 n% B  Q& E    本节最后对结果的解释也非常值得学习:启示我们,一些数学结果如参数前后的变大/变小,可能意味着什么,我们不要轻易放过,而是要时刻不忘解释相对应的原因。- A! d$ [) S; o, `) I
    7.2 减肥计划——节食与运动
    4 `: S: Z% z& @% q5 j+ K    这是一个很生活的问题,主要讨论如何把一个“超重”的人减到目标的正常范围内(均以WTO颁布的体重指数BMI衡量)。9 m: S  K2 p) F: x' g3 g0 C
        我认为这个模型的两点仍然在建模本身:及如何将减肥计划中“减肥”这一件事量化,用数学的语言可以表达,写出差分方程。其中p208的“基本方程”式(1)是整个模型的基石,有了此式后面的工作就可以往上搭建了。注意到,式(1)其实是一个“建而不解”的方程。) @7 e0 Y& h: F& L
        但正如节末评注中所述,实际参数的设置会更复杂,代谢消耗系数beta也因人而异、因环境而异,所以要有更多核对。但我们先要学习的还是建模这一步。- ]1 L/ p/ f! b2 t/ E2 L6 v
    8 v1 z8 U0 D4 I* t6 y- N7.3 差分形式的阻滞增长模型1 t) a9 d6 r: ], i. g2 p
    : v% C8 X7 t, u' D; Z8 X    此节是与之前用微分方程Logistic规律描述的“阻滞增长”规律最好的对比。有时,用离散化的时间研究比较方便,本节是很好的参考。(按:本人曾经做过用差分方程加修正,描述人数传播问题,个人认为很多情况用差分方程更好,也更“诚实”些,因为我们也只是想要每个时段的数量)! i( Q( h. P& d" S& d7 c+ G' W/ S9 e6 O5 B. ^0 D
        要注意的是:若用离散描述,需要说明各“时段”指代意义。推出p211的式(6)后,这个一阶分线性差分方程,也是“建而不解”,但注意:此处“不解”是指不需求通项公式,但各项的值仍要计算——用计算机递推可方便得到。我们最关心的往往是k趋向无穷时,y/x收敛情况,即平衡点稳定性的问题。这里微分、差分方程判别上有区别。; a$ H4 [6 A2 n  S8 x- O
        P212中,通过深入讨论和213页的数据表发现,不同的参数b下收敛情况不一,然后发现了“倍周期收敛”的规律,即存在多个收敛的子序列。然后发现当n区域无穷时,不在存在任何倍周期收敛,出现混沌现象(Chaos)。9 K7 Q5 q; c9 s: x- D+ ^; Q4 N3 z" D3 p2 [3 x
        混沌的特点为对初值极度敏感,这一点在物理课中老师也提到过,许多非线性方程均是如此,即“差之毫厘,失之千里”,蝴蝶效应。( W' n- X6 U5 W& a8 i6 y4 g5 k) K% C' q( \' x
    7.4 按年龄分组的种群增长
    # Y. p% X: v/ w" L- `( l    这个模型的主要区别在于:将种群分成n个年龄组,分析各年龄组对种群总量增减的影响。这一节的数学推导稍繁。
    & I0 ]  v9 h- @3 k( e0 `
    9 f; P* `1 l8 d# ^* f
    zan
    转播转播0 分享淘帖0 分享分享0 收藏收藏0 支持支持0 反对反对0 微信微信
    您需要登录后才可以回帖 登录 | 注册地址

    qq
    收缩
    • 电话咨询

    • 04714969085
    fastpost

    关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

    手机版|Archiver| |繁體中文 手机客户端  

    蒙公网安备 15010502000194号

    Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

    GMT+8, 2025-7-20 06:45 , Processed in 0.656154 second(s), 53 queries .

    回顶部