- 在线时间
- 25 小时
- 最后登录
- 2019-2-18
- 注册时间
- 2014-4-7
- 听众数
- 8
- 收听数
- 0
- 能力
- 0 分
- 体力
- 198 点
- 威望
- 0 点
- 阅读权限
- 60
- 积分
- 106
- 相册
- 0
- 日志
- 0
- 记录
- 0
- 帖子
- 91
- 主题
- 30
- 精华
- 0
- 分享
- 0
- 好友
- 6
TA的每日心情 | 奋斗 2014-12-7 07:58 |
---|
签到天数: 22 天 [LV.4]偶尔看看III 宣传员
 群组: 2014年网络挑战赛交流 群组: 国赛讨论 群组: 2014美赛讨论 群组: 第三届数模基础实训 |
差分方程模型+ ^+ Y' v. C1 U# l. L
, ~4 f( Q' @" A1 i5 p 将时间离散化后,就可以建立与微分方程相对应的差分方程模型。这章与第8章讨论的是确定性离散模型。实际上有些问题既可以用连续,又可以用离散,要看目的而定。离散的一个优势在于,便于计算机求解。8 y, K* V# P" X7 O Y: Q L* H+ n
5 i: q$ {5 { v/ H/ [4 `
! E8 R3 [- {6 K _% E/ x7.5 差分方程简介:介绍差分方程稳定性的知识,判别稳定的条件。本章要用到的知识。
; W7 n. W4 b$ s1 ~0 `8 Z6 T7.1 市场经济中的蛛网模型: i3 v0 J" t6 P0 u- e% H& d/ R4 v4 P' \0 N w: z
先用图形法建立市场经济的“蛛网模型”,给出趋于稳定的条件,再用差分方程建模,解释结果。本节开头的“问题前瞻、介绍”部分很经典,可作为建模论文写作的参考。, Q* R2 M% q* g% Z2 @! f" D
$ h8 ?. J+ L/ m7 [. h' U. c 本节最后对结果的解释也非常值得学习:启示我们,一些数学结果如参数前后的变大/变小,可能意味着什么,我们不要轻易放过,而是要时刻不忘解释相对应的原因。/ O( J' N# M0 u% u3 Z, P
7.2 减肥计划——节食与运动
0 X& Z* D: L* x! i1 c& ? 这是一个很生活的问题,主要讨论如何把一个“超重”的人减到目标的正常范围内(均以WTO颁布的体重指数BMI衡量)。5 i# e* }+ S( S! W
我认为这个模型的两点仍然在建模本身:及如何将减肥计划中“减肥”这一件事量化,用数学的语言可以表达,写出差分方程。其中p208的“基本方程”式(1)是整个模型的基石,有了此式后面的工作就可以往上搭建了。注意到,式(1)其实是一个“建而不解”的方程。% ?6 z& r& t# A m
但正如节末评注中所述,实际参数的设置会更复杂,代谢消耗系数beta也因人而异、因环境而异,所以要有更多核对。但我们先要学习的还是建模这一步。- ]1 L/ p/ f! b2 t/ E2 L6 v
+ R# ^, y) s# s7.3 差分形式的阻滞增长模型1 t) a9 d6 r: ], i. g2 p/ {3 {% a% |, d" ?7 d9 ^$ [$ P3 q6 q
此节是与之前用微分方程Logistic规律描述的“阻滞增长”规律最好的对比。有时,用离散化的时间研究比较方便,本节是很好的参考。(按:本人曾经做过用差分方程加修正,描述人数传播问题,个人认为很多情况用差分方程更好,也更“诚实”些,因为我们也只是想要每个时段的数量)! i( Q( h. P& d" S& d
% J. g3 |8 j0 I+ g/ L8 p 要注意的是:若用离散描述,需要说明各“时段”指代意义。推出p211的式(6)后,这个一阶分线性差分方程,也是“建而不解”,但注意:此处“不解”是指不需求通项公式,但各项的值仍要计算——用计算机递推可方便得到。我们最关心的往往是k趋向无穷时,y/x收敛情况,即平衡点稳定性的问题。这里微分、差分方程判别上有区别。
; W9 n. k( Z8 R; P5 B, Z- y P212中,通过深入讨论和213页的数据表发现,不同的参数b下收敛情况不一,然后发现了“倍周期收敛”的规律,即存在多个收敛的子序列。然后发现当n区域无穷时,不在存在任何倍周期收敛,出现混沌现象(Chaos)。9 K7 Q5 q; c9 s: x- D+ ^; Q* _" m C! s4 v5 I
混沌的特点为对初值极度敏感,这一点在物理课中老师也提到过,许多非线性方程均是如此,即“差之毫厘,失之千里”,蝴蝶效应。( W' n- X6 U5 W& a8 i6 y
4 s0 S- j) B, m9 z, A7.4 按年龄分组的种群增长5 M B& L' y3 H) v" _, n* Y
这个模型的主要区别在于:将种群分成n个年龄组,分析各年龄组对种群总量增减的影响。这一节的数学推导稍繁。
' \! t: O* ]4 T# V" U& x- @2 }- B+ W [& y! T
|
zan
|