QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 7612|回复: 3
打印 上一主题 下一主题

【讨论】求助一个矩阵函数极小值的问题

[复制链接]
字体大小: 正常 放大
ligong        

1

主题

0

听众

1

积分

升级  20%

该用户从未签到

新人进步奖

跳转到指定楼层
1#
发表于 2009-9-3 19:56 |只看该作者 |倒序浏览
|招呼Ta 关注Ta
本帖最后由 厚积薄发 于 2010-2-16 10:29 编辑 ! F; l2 S) s* _+ ?( Q

  U  x' q8 i6 tF(X)=|| H-AX|| p + ||DX||k 1 }8 \" }! ?1 B! n4 h8 l5 |# k
0 t1 j" |; ^4 l, j, Y
H、A、D、n是二维非负实数矩阵常量,X是二维非负实数矩阵变量, || H-AX|| p是矩阵H-AX的lp范数,||DX||k是矩阵DX的lk范数,p、k是大于0的实数常量。4 U: |8 z! `4 ?! ]& j% u
怎样求满足F(X)为全局极小值的矩阵X?1 D3 g' T3 T6 c* k( n6 [2 q3 H! `
0 E6 k4 l: W% }/ `4 }$ n' o9 y" Q
原始问题是已知H、A, 求AX+n=H中X的近似解 n是加性广义高斯噪声 A代表系统退化模型的离散矩阵,H是观察到的像离散矩阵,X是待求的真实的物象离散矩阵,D是正则算子离散矩阵。
  O- l' Z7 N; J0 I! ~3 c1 F/ o0 }- b' z) z, Y. S
收藏 分享 评分
zan
转播转播0 分享淘帖0 分享分享0 收藏收藏0 支持支持0 反对反对0 微信微信
ligong        

1

主题

0

听众

1

积分

升级  20%

该用户从未签到

新人进步奖

回复

使用道具 举报

罗俊        

0

主题

4

听众

36

积分

升级  32.63%

该用户从未签到

新人进步奖

回复

使用道具 举报

王会卿 实名认证       

1

主题

4

听众

93

积分

升级  92.63%

该用户从未签到

新人进步奖

群组LINGO

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册地址

qq
收缩
  • 电话咨询

  • 04714969085
fastpost

关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

手机版|Archiver| |繁體中文 手机客户端  

蒙公网安备 15010502000194号

Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

GMT+8, 2025-7-21 11:49 , Processed in 0.778164 second(s), 72 queries .

回顶部