) l1 \5 L- V3 R" [/ F4 W& b( D
“Paradox Box”是一套有六组片子的幻灯片,它包括逻辑学、概率论、数论、几何学、统计学和时间等六个方面的数学悖论,另外还附有录音带作解说。本书是这套材料的说明。 4 A* h; e6 C, H' H: ~2 @
“悖论”也可叫“逆论”,或“反论”,这个词的意义比较丰富,它包括一切与人的直觉和日常经验相矛盾的数学结论,那些结论会使我们惊异无比。悖论有三种主要形式。
- i; L u4 s. R2 G3 X1.一种论断看起来好像肯定错了,但实际上却是对的(佯谬)。 2 s4 X' e" |3 k& |! t
2.一种论断看起来好像肯定是对的,但实际上却错了(似是而非的理论)。
9 Y+ c. T9 p4 ]$ n2 V3.一系列推理看起来好像无懈可击,可是却导致逻辑上自相矛盾。 6 W) L4 E, \4 G) c5 H0 X# c2 Q/ s2 S
悖论有点像魔术中的变戏法,它使人们在看完之后,几乎没有—个不惊讶得马上就想知道:“这套戏法是怎么搞成的?”当把技巧告诉他时,他就会不知不觉地被引进深奥而有趣的数学世界之中。正因为如此,悖论就成了一种十分有价值的教学手段。 ( E- Y2 z c% p5 q O) g! `
悖论是属于领域广阔、定义严格的数学分支的一个组成部分,这一分支以“趣味数学”知名于世。这就是说它带有强烈的游戏色彩。然而,切莫以为大数学家都看不起“趣味数学”问题。欧拉就是通过对bridge-crossing之谜的分析打下了拓扑学的基础。莱布尼茨也写到过他在独自玩插棍游戏(一种在小方格中插小木条的游戏)时分析问题的乐趣。希尔伯特证明了切割几何图形中的许多重要定理。冯·纽曼奠基了博弈论。最受大众欢迎的计算机游戏—生命是英国著名数学家康威发明的。爱因斯坦也收藏了整整一书架关于数学游戏和数学谜的书。
) R; l/ {8 J$ q r趣味数学具有重大教育学价值.这一点只是在最近才为一大批教师所认识。很多现象说明,这一趋势正在发展。雅可比的教本:《数学—人类的魄力》获得了极大成功,其部分原因无疑是他巧妙地把趣味性材料揉进了传统的数学问题中。现在在教师会议和期刊里,趣味数学的文章也越来越多。美国教师委员会出版的威廉·沙夫编的《趣味数学书目》发行量是很大的。
+ l1 X) r# R; a: x( I就我们所知,悖论箱是第—次用视听方法向中学生和大学低年级学生介绍趣味数学的重要尝试。这六个部分的幻灯故事内容都很新颖,大部分是过去没有见过的。有些材料即便不是新的,它也是用不同形式和色调来表现的。 : r; l9 V! ~) e) d; ^
这套书有五个主要目的:
2 n2 s* R6 @& ]: v* e7 _0 H1.激发学生对数学的兴趣;
' ~2 Y0 |$ h# J2 i. w7 r2.向读者介绍重要的数学思路;
& d4 n. y* x& P" h( E3.发起丰富多彩的数学活动;
6 R0 i' D5 X* F4.使人洞悉解题过程; , C9 ?4 S9 x3 I- k' S5 M8 C
5.提高学生对现代数学所具有的美妙、多样、甚至幽默性质的鉴赏力。 |