- 在线时间
- 0 小时
- 最后登录
- 2007-9-23
- 注册时间
- 2004-9-10
- 听众数
- 3
- 收听数
- 0
- 能力
- 0 分
- 体力
- 9975 点
- 威望
- 7 点
- 阅读权限
- 150
- 积分
- 4048
- 相册
- 0
- 日志
- 0
- 记录
- 0
- 帖子
- 1893
- 主题
- 823
- 精华
- 2
- 分享
- 0
- 好友
- 0

我的地盘我做主
该用户从未签到
 |
秦九韶
2 Z' e* i, h- p' y, _0 e) |5 W- l9 R- e! M# o
% e3 e0 s, e$ u3 m
$ f, V( v- \! ^: w: X4 I
|
7 U2 y' a* _! x4 r7 {# \$ O' H; N( ?; y3 [$ b7 ~( l4 \& }
| ' i ]( m( S' k! `! `3 `& U
2 ^8 U. P9 W- M
+ _' Y, H! i% y0 s) o6 p! A" W# y- q' T4 d+ Y- ?
(公元1202~1261年) " h0 V H i' k1 i
; \# J& x L% w r南宋,数学家。他在1247年(淳佑七年)著成『数书九章』十八卷.全书共81道题,分为九大类:大衍类、天时类、田域类、测望类、赋役类、钱谷类、营建类、军旅类、市易类。这是一部划时代的巨着,它总结了前人在开方中所使用的列筹方法,将其整齐而有系统地应用到高次方程的有理或无理根的求解上去,其中对「大衍求一术」﹝一次同余组解法)和「正负开方术」﹝高次方程的数值解法)等有十分深入的研究。其中的”大衍求一术”﹝一次同余组解法),在世界数学史上占有崇高的地位。在古代<孙子算经>中载有”物不知数”这个问题,举例说明:有一数,三三数之余二,五五数之余二,七七数之余二,问此数为何?这一类问题的解法可以推广成解一次同余式组的一般方法.奏九韶给出了理论上的证明,并将它定名为”大衍求一术”。 | |
zan
|