由假设得到公式1 p( p( T8 l5 h- a, |5 d7 ^
1.We assume laminar flow and use Bernoulli's equation:(由假设得到的公式) % J4 P0 y; q, a# {* x5 j' l a" p3 m) |/ ~" v0 [! i/ p" a
公式 0 X! C0 b& W3 A, e# Q2 R# D( x9 Y* W0 X3 n& ?- M
Where , {* \9 p) `4 m1 }8 t9 n0 d 9 H% b7 k: @1 C" n( I3 f8 u d5 Q符号解释 % D" n f2 j( h! b" S. |' @5 e5 X 4 S3 p+ D9 `( J' n# \3 ]/ @& MAccording to the assumptions, at every junction we have (由于假设)" c6 F5 C' g' J( c
; ~3 c3 B, I: A0 Z
公式7 F) b; C( B* M" ` r2 z' k5 c
0 L6 B% W; r1 k
由原因得到公式 , b* F4 `, B* b @! y. h0 O2.Because our field is flat, we have公式, so the height of our source relative to our sprinklers does not affect the exit speed v2 (由原因得到的公式); 9 F( t1 Q* Q O2 R+ X. u( u0 L0 {" X: b% |. r
公式6 p- k) W2 {7 \+ i. F! ~* m; m" ~0 _
+ S- ?( M4 z3 j9 W1 Z! c" @
Since the fluid is incompressible(由于液体是不可压缩的), we have- C, t$ |2 g, h& a/ R
4 x- z6 \- s% }$ y* G: f公式2 S$ h/ }" Y/ u' [! X# ]
8 S2 H4 E9 K! I# G D2 ]
Where7 L+ a ]$ y) M' p
+ S% y4 `( [$ F4 G* Q: w: h2 X' I
公式% C7 h! f: P# G' d; J' c
* f3 \! s( [6 E& l- J5 c; Y$ [8 J
用原来的公式推出公式/ T0 e6 `* M3 H6 C/ b
3.Plugging v1 into the equation for v2 ,we obtain (将公式1代入公式2中得到) . B1 g' k) }* H5 j. O , W$ r# t& O0 [2 \& f, O/ O公式' r+ D4 m: B& J& y! x& @! O
: Y3 L R* @5 X5 I" x. e+ Y5 X11.Putting these together(把公式放在一起), because of the law of conservation of energy, yields:9 ~# `! w3 }9 p! U+ M
2 w& `3 D1 L) v1 |, s g3 h7 y( m
公式; d! k+ Y( F; L. X2 j$ G
& L: }- h5 \: W12.Therefore, from (2),(3),(5), we have the ith junction(由前几个公式得)7 R- l: ~9 u$ B5 ]! [
' ^" ~( M1 [2 N公式 8 c: I; `* e- A) s5 o: g& Y4 Y / b3 A) D+ D- b1 m/ gPutting (1)-(5) together, we can obtain pup at every junction . in fact, at the last junction, we have; m1 ]9 i6 o! X
- Y6 ?: V3 w" j
公式4 x! z( F" ~1 }9 ^! s( y! I& Y
0 v$ [) V; e) q. g3 G7 _: t% c+ |
Putting these into (1) ,we get(把这些公式代入1中) R9 t' V: {1 g8 D5 C- ~% H! k7 F: n4 U2 f4 p$ R5 X
公式 , F u, m( A0 `0 x3 m 4 |, v1 }3 u/ c! UWhich means that the/ }6 T( q# V" S5 P# d' y( {+ _/ O& s
/ v' N, B4 n- U. T5 `! S0 dCommonly, h is about1 N6 n' C0 p, `+ G9 n
8 n8 [/ d0 H- Q( j5 J& F% gFrom these equations, (从这个公式中我们知道)we know that ………& F6 q% i$ ]% I( {! C
8 r2 u& C( n' d$ u) P; |+ T5 u
: q E; L1 l, ]$ x1 v3 l- C% g
! O6 ], @7 m& J9 w/ k+ @
引出约束条件) u) \) }3 d% z* {8 {
4.Using pressure and discharge data from Rain Bird 结果, + v5 I; w) [. R" o - Y* f3 u; Q% l5 \) JWe find the attenuation factor (得到衰减因子,常数,系数) to be / z. e, s$ R, d- X' F6 C: ^0 f4 v' V# N% h
公式 0 T5 a) }; {. [! a ~& f- t: T6 J/ T0 @
计算结果 7 n! G4 Z" X; g, m5 ~5 N0 G) S6.To find the new pressure ,we use the ( 0 0),which states that the volume of water flowing in equals the volume of water flowing out : (为了找到新值,我们用什么方程)* d% x- M8 b/ F1 S
5 M2 |3 b* K) K6 Z0 l8 ]: z
公式3 Z4 T* m6 d- e) Q; ?
* B, j j' c) v
Where 0 I$ J) r3 K6 t1 n, a$ K; h# E- s( Y2 ]$ v) T
() is ;;- c6 R% t+ M2 N. u
V8 u S" j1 E
7.Solving for VN we obtain (公式的解), W3 g3 s, x( `: g N1 Y k
- S1 g: `$ g6 r4 E# B8 N
公式 ) ~& S' N8 S- Q# n2 P, X2 @ 4 u0 W# A3 |6 B, R; N, ?Where n is the ….. - Z! I+ |1 H* o! \6 X/ p 4 T: [: h3 M- b3 V5 {' \2 M9 Z" f 8 O( G2 e" y0 G' K3 k1 s+ m, w
* y5 l. A$ `: B" d7 x& V6 e' k
8.We have the following differential equations for speeds in the x- and y- directions: : N2 T7 P4 d% N, }8 n- {. W$ B6 j; C2 K% K0 U3 D
公式; h9 l) l* y R8 ~' V9 T
) I) O" t- ]( v" I3 }9 pWhose solutions are (解); u% w/ p" K/ Q5 @0 d/ y
* b6 w# _9 ]! _- ]" z' ` _4 C
公式" P' o2 w8 ?- d, ]/ E) V5 G1 v
, x) \% J, x6 {0 N2 z) L! f$ a B
9.We use the following initial conditions ( 使用初值 ) to determine the drag constant: 4 Z' O n' C( L7 g. h* X" I 4 \. x6 L+ f- K4 l* \公式 - a4 q% m+ x- ]) V1 M" r8 P% s/ G( Z* w5 J4 h$ _0 _
根据原有公式- K# Q! C/ R& t: U' J
10.We apply the law of conservation of energy(根据能量守恒定律). The work done by the forces is* g! O9 |" n( F) Y; Z" D
7 B& I$ w9 l! S" k8 O6 f' F
公式 * _, i% h2 U/ I5 r/ p0 f( m4 p8 J2 ]5 V( k+ X i9 k# v
The decrease in potential energy is (势能的减少) . R5 y% o+ p9 \8 Q; G8 G% g5 ^2 i' o; A/ X) W
公式7 `; S) `; X' g F- \6 \
, C: _5 J' M+ c4 S1 L8 mThe increase in kinetic energy is (动能的增加) k7 j6 b6 {: J( E! _
: u) D) O! ?2 u& v9 v- d
公式1 W" ]- {1 e5 T I( j
6 l# H2 S3 P+ T, h" H5 a
Drug acts directly against velocity, so the acceleration vector from drag can be found Newton's law F=ma as : (牛顿第二定律) 6 L- a4 e+ G# P, b F( ^2 x* {4 A/ w9 n1 t
Where a is the acceleration vector and m is mass % S2 N" |! K* {: z: N: B 3 K B& U: U' O6 A" r 4 \ w9 C% X5 G) g7 c5 t1 Z7 a
$ D- M# H$ N( f& z9 e
Using the Newton's Second Law, we have that F/m=a and 6 s9 X$ v9 j2 K: u& e+ g: n3 r+ {8 ]3 \! ^2 f4 p9 E3 Q2 a, V. ?, [- B
公式 ( Z- @- ~5 S1 O: r5 s ) ]3 A6 m4 j4 FSo that7 H4 \2 k j! S7 ?0 n9 B; [# t
. l' l3 e, ~0 s5 N$ t
公式6 r+ ^) s6 P8 z: n) @" ?
/ @& j* m9 S0 m' }* a- M C
Setting the two expressions for t1/t2 equal and cross-multiplying gives 9 S3 [1 q& U" P - V& b& V' U: Q6 j& Q% F4 c" e公式 & D, e% E t1 r$ R2 D9 b& d5 s/ Y- e; n; G% F
22.We approximate the binomial distribution of contenders with a normal distribution: : F7 [' O2 }% B) l- z; _ 3 Q( O) V& U @! o4 n# p公式- b. `0 U) n$ L5 e0 x8 f! z% t
- q) W. \% t0 x! bWhere x is the cumulative distribution function of the standard normal distribution. Clearing denominators and solving the resulting quadratic in B gives8 ^6 v: @: V9 t# v' h
6 v, x$ H3 Z0 i) h$ tAs an analytic approximation to . for k=1, we get B=c . a( h3 a% r) ?+ Z% v0 g 3 J5 P% ?: |# ]9 B7 K 6 ?/ I/ R s" x3 X" { ( S) m( S- u8 g8 R* ?8 m l26.Integrating, (使结合)we get PVT=constant, where 8 T! Y8 N- t( g7 r h$ R3 V A9 L! T$ ^0 J4 i: @
公式 ; W/ ^9 |% T1 a) Y( Q3 M ' i5 @/ \$ v' ]9 U9 WThe main composition of the air is nitrogen and oxygen, so i=5 and r=1.4, so! P! K1 `5 f$ T; Y& p- ?1 L- Y
4 e- x- C, J# V# N7 `) i
* S7 `1 [5 C2 s2 V% v. l! ^; G
3 X; O/ B! j& e23.According to First Law of Thermodynamics, we get1 F/ R% t% H0 d& K8 {
3 J! u1 N$ ~ M: r$ |: j' |* A公式5 t: f, B; {- b9 Z
. a' ]" w# @1 h; X# ]. N
Where ( ) . we also then have' i9 P! ^ e+ z1 X. c1 R5 m6 y
/ M* l0 V* G0 x. @. r6 W公式" B; @* S# A/ ?, L c& |
) e% \( ~* D4 B$ q z
Where P is the pressure of the gas and V is the volume. We put them into the Ideal Gas Internal Formula: 0 X& j+ K4 Z. a+ s+ }) H : p1 H# O" [. a' ~; X( |公式! C& k& \$ Z8 G3 ~+ y0 X
8 f2 b; @ U) J9 I2 R( m
Where ) u, b) `& j- r# p6 W# I7 ^2 e$ G: ?, B* G
7 H! o* L/ Y6 p8 B5 v! m# O! B6 }# l! k3 |
对公式变形 ! h! X' f: b% e `% o. p- k; _- w13.Define A=nlw to be the ( )(定义); rearranging (1) produces (将公式变形得到)5 @1 _: }$ ?! X j0 Q$ v }2 q
! u# J& a' f$ w5 j# P* U公式 0 q" u! w3 }+ [ z N6 }0 i9 O6 _) g- z
We maximize E for each layer, subject to the constraint (2). The calculations are easier if we minimize 1/E.(为了得到最大值,求他倒数的最小值) Neglecting constant factors (忽略常数), we minimize, T+ W0 v4 K& E' j+ ]* D
' U1 k$ l4 d: S/ O$ ?
公式 2 L5 m# K1 B6 k5 d* H/ l) U) x. A$ z0 Z" a1 x# y K5 u, [
使服从约束条件7 F1 g: D p% Q5 O0 N% n" g! i
14.Subject to the constraint (使服从约束条件) ( |7 }3 f( g0 ^* `! k + K- [$ g$ e- R0 c% @0 z! J公式 ( ^6 X2 v. q7 x+ w3 w1 @5 g$ |8 _: g; U7 K: ^" ]1 J
Where B is constant defined in (2). However, as long as we are obeying this constraint, we can write (根据约束条件我们得到) 4 Z1 \, f# f: u6 l# k! q9 Z1 T+ t+ U0 I1 Z8 a. h2 U y
公式4 b) j) F, P5 O; Z+ _8 ~
" P0 i% J" |1 c9 jAnd thus f depends only on h , the function f is minimized at (求最小值) 4 C% m0 T4 {; r2 k( J ) O( G! l$ F; Z( _公式' w, v' e1 h( s/ j: t1 t3 k
. y3 q7 ] V! ~At this value of h, the constraint reduces to0 v, S% y, o5 j% C4 O3 ~
/ e5 h- y* k. N }. W' F
公式 5 s9 R4 x0 W5 D* ~. K+ o! q; x3 ~, ~) N& i. v% I5 M6 i) ^
结果说明 / z4 U- T0 o# A. N. _; U9 M5 Q15.This implies(暗示) that the harmonic mean of l and w should be: I }1 y8 d" U2 \) h
; ^' u3 t- ~4 `' \% f6 A4 Y. M3 d公式. C- l5 V* F" \
* S7 Y- _8 L m3 G: I
So , in the optimal situation. ……… ; d, S# x% u) v2 ^; l2 C, `6 U
5.This value shows very little loss due to friction.(结果说明) The escape speed with friction is : T- ?4 m0 n! P5 e2 u" u4 q5 m% v9 L
公式" l; r9 u4 l3 |; Z
4 B0 P8 ^, W I* m16. We use a similar process to find the position of the droplet, resulting in ! ?* V" }' |: X0 ?! \- l* l4 Z ]& q) ]4 q/ s4 a
公式 / i( ]8 A1 ?$ L5 | 3 ?+ N, w. I( z* c3 L) p* ^With t=0.0001 s, error from the approximation is virtually zero.% `2 p {7 \' I
3 v3 R1 G' y/ |6 O) v- N ! `( S O, l1 M+ ~6 f) Y& N* g9 W 5 E) y& c. @( W' F5 P17.We calculated its trajectory(轨道) using $ }# T3 w1 H( J2 U% R) y8 u 0 ] B. b7 n$ h/ H公式1 y/ k8 E4 o# c8 [3 g
* a7 b. z S0 ] j5 r
18.For that case, using the same expansion for e as above, 6 o/ O3 j; K/ ]3 U4 o 7 a, v2 |) W5 r- W: d3 o% \ G$ x- s公式 3 `5 U* v, Z. \! ~; o, E0 W9 g) j1 o- d# e+ y9 l
19.Solving for t and equating it to the earlier expression for t, we get 3 @" C0 o( L8 }: q7 k( v2 v+ a J
公式 ' b" e1 q( }" w" X2 ^) R, R4 b . A1 m% q% D9 c( o7 {' M8 b20.Recalling that in this equality only n is a function of f, we substitute for n and solve for f. the result is 7 o" w8 g5 R; F6 R; n) ? + e7 j% P% Y; c3 z. O$ `8 ]0 y公式 ' l* ]8 Q$ C! I, I' v+ E9 n% g " J4 S( V0 w5 Z3 i4 AAs v=…, this equation becomes singular (单数的). ' b. t! }5 n: r1 f. x1 X7 y& @7 k6 ?' B2 s3 t5 T4 B$ y7 q0 Z* {
4 Y3 o' n4 x( R# l8 b! r2 B / s# x1 U7 N' Z3 x, L) B+ `; F* p由语句得到公式 ) B0 i8 k, _/ E+ h( F21.The revenue generated by the flight is # N& z$ r0 D6 q9 U* H - Y; I& F* E* l' `/ }0 O9 J公式' E. q& C( v2 `4 f5 {
& g. T& h* a5 W9 P* N
' M D; A; z. h2 N; m& d
2 u+ b( ^" s" c, W# Y0 l- i
24.Then we have0 Q, e' C& D0 W' ~; B! @
' C: d3 |5 v/ P4 _: V/ B% C8 c3 n5 s+ Y
公式- f& u& h6 r2 B: i$ _0 k5 n1 D- H C8 M0 v
, r5 b+ T3 T8 p3 j5 n
We differentiate the ideal-gas state equation; E: `9 j* K8 S. L4 B
6 @+ v2 e1 t' m R, R+ Q公式 # K" K: z4 q9 r1 [3 W7 e : S( X+ o7 z" O- HGetting- ^) S6 P& \) x" x2 }9 _* O2 @
( S; R9 Q, D% v
公式 i4 g$ u4 b8 H" t' P
- ]3 F- W# @5 m. L& k7 w
25.We eliminate dT from the last two equations to get (排除因素得到) 3 j2 c( W9 n' v J1 S# ^. G# t 7 J, y, H- y/ R/ X8 D7 u公式8 F9 ?) a' e5 ^! }: b7 u, O2 y8 f
% }8 @) o0 M- } ) W' M: L" H6 G: T, o9 z
5 n4 U6 J7 L4 u. s) E
22.We fist examine the path that the motorcycle follows. Taking the air resistance into account, we get two differential equations + U( T% n7 { B/ v2 h 0 ?& P5 e$ o+ I6 G( ~公式 + M' m& Y8 ?# O1 {' _ 7 }/ ]$ q! }1 sWhere P is the relative pressure. We must first find the speed v1 of water at our source: (找初值) . }5 o- ?+ g; k7 Z* o9 v/ d5 E$ y" { . s, \/ {+ w" {公式" W6 g1 \2 c: B1 z8 P n5 B
————————————————7 N. A3 \7 \# H2 S
版权声明:本文为CSDN博主「闪闪亮亮」的原创文章。4 Z( U$ F8 e0 p G% ^8 @
原文链接:https://blog.csdn.net/u011692048/article/details/77474386 : H& U) @3 K2 I. ^